Channel Backscattering Based Analytic Model for Double-Gate MOSFETs and Silicon Nanowire Transistors
碩士 === 國立交通大學 === 電子工程系所 === 94 === According to the fundamental theory of the channel backscattering, a physically based analytic model is established in the kBT layer at the peak of the source-channel barrier. By using the 1-D Schrödinger-Poisson simulation and the evaluations of the underlying di...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
2006
|
Online Access: | http://ndltd.ncl.edu.tw/handle/39521922351688435332 |
Summary: | 碩士 === 國立交通大學 === 電子工程系所 === 94 === According to the fundamental theory of the channel backscattering, a physically based analytic model is established in the kBT layer at the peak of the source-channel barrier. By using the 1-D Schrödinger-Poisson simulation and the evaluations of the underlying different structures, the validity of the model can be corroborated. Simulation for the forward and backward flux relation under different conditions by the Monte Carlo technique can also confirm the validity of the model. In this thesis, a series of physically-based analytic models applied to ultra-thin double-gate MOSFETs and silicon nanowire transistors are analyzed and testified. The reasonable results are achieved.
|
---|