A factored, interpolatory subdivision scheme for surfaces of revolution
We present a new non-stationary, interpolatory subdivision scheme capable of producing circles and surfaces of revolution and in the limit is C1. First, we factor the classical four point interpolatory scheme of Dyn et al. into linear subdivision plus differencing. We then extend this method onto s...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | English |
Published: |
2009
|
Subjects: | |
Online Access: | http://hdl.handle.net/1911/17622 |