On the boundaries of special Lagrangian submanifolds
An n-dimensional submanifold M in ${\bf C}\sp{n} = {\bf R}\sp{2n}$ is called Lagrangian if the restriction of $\omega$ to M is zero, where $\omega = \Sigma{\limits\sb{i}}dz\sb{i}\ \wedge\ d\bar z\sb{i}$. It is called special Lagrangian if the restrictions of $\omega$ and Imdz = Im($dz\sb1 \wedge \cd...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | English |
Published: |
2009
|
Subjects: | |
Online Access: | http://hdl.handle.net/1911/16823 |