Algorithmes de commande des systèmes électrohydrauliques à dynamique variable

Cette thèse propose des nouvelles lois de commande pour les servo-systèmes électrohydrauliques (SSEH) en contexte industriel. Les contrôleurs proportionnels-intégraux-dérivés (PID), très employés en industrie, sont limités dans la commande des SSEH à cause de la dynamique non-linéaire de ces syst...

Full description

Bibliographic Details
Main Author: Angue Mintsa, Honorine
Format: Others
Published: École de technologie supérieure 2011
Online Access:http://espace.etsmtl.ca/921/1/ANGUE_MINTSA_Honorine.pdf
http://espace.etsmtl.ca/921/2/ANGUE_MINTSA_Honorine%2Dweb.pdf
Description
Summary:Cette thèse propose des nouvelles lois de commande pour les servo-systèmes électrohydrauliques (SSEH) en contexte industriel. Les contrôleurs proportionnels-intégraux-dérivés (PID), très employés en industrie, sont limités dans la commande des SSEH à cause de la dynamique non-linéaire de ces systèmes. Des études montrent que la linéarisation exacte est une technique satisfaisante de commande qui tient compte des non-linéarités des SSEH. Il est toutefois nécessaire d’améliorer la robustesse de cette technique en présence de frictions, de perturbations dans la charge et des variations dans les paramètres hydrauliques. La première loi de commande proposée dans cette thèse traite de l’incertitude de modélisation due à la pression de service. Les lois de commande adaptative proposées dans la littérature sont limitées pour compenser les incertitudes de modélisation de ce paramètre à cause de son caractère non-linéaire par rapport au modèle. Nous résolvons ce problème en utilisant une loi de commande commutative basée sur la méthodologie de la linéarisation exacte. Contrairement aux lois traditionnelles de commande adaptative qui ajustent la valeur d’un paramètre spécifique, la loi de commande commutative que nous proposons actualise la valeur d’une fonction qui comprend l’incertitude de la pression de service. La deuxième loi de commande développée dans ce travail compense l’incertitude de modélisation due aux frictions bidirectionnelles, aux perturbations externes et aux paramètres hydrauliques. Dans la littérature, les versions fuzzy et/ou avec mode de glissement des contrôleurs basés sur la linéarisation exacte sont utilisées pour compenser les frictions bidirectionnelles et les perturbations externes. Cependant, ces versions possèdent des opérations complexes limitant l’implantation en temps réel. Nous contournons ce problème en améliorant la restrictive loi adaptative par une version plus étendue qui compense non seulement les incertitudes des paramètres hydrauliques mais aussi celles liées aux frictions bidirectionnelles et perturbations externes. L’implantation en temps-réel de nos lois de commande est réalisée en calculant numériquement les dérivées successives des mesures expérimentales. Nous montrons, à travers cette étape, que les lois de commande que nous proposons dans cette thèse peuvent être implantées en présence de bruit sur les mesures, de frictions, de saturation de la servovalve et de variations de la charge mécanique. Les résultats numériques et expérimentaux montrent que les performances de nos lois de commande sont supérieures à celles obtenues avec le contrôleur PID et le contrôleur basé sur la linéarisation exacte. La présente étude s’effectue sur un système électro-hydraulique en rotation. Toutefois, la méthodologie de résolution est générique et permet l’extension des résultats sur un système hydraulique en translation.