Predicting transcription factor binding sites using phylogenetic footprinting and a probabilistic framework for evolutionary turnover
Identifying genomic locations of transcription-factor binding sites (TFBS), particularly in higher eukaryotic genomes, has been an enormous challenge. Computational methods involving identification of sequence conservation between related genomes have been the most successful since sites found in su...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | en |
Published: |
McGill University
2010
|
Subjects: | |
Online Access: | http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=87000 |
id |
ndltd-LACETR-oai-collectionscanada.gc.ca-QMM.87000 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-LACETR-oai-collectionscanada.gc.ca-QMM.870002014-02-13T04:05:22ZPredicting transcription factor binding sites using phylogenetic footprinting and a probabilistic framework for evolutionary turnoverParmar, VictorBiology - BioinformaticsIdentifying genomic locations of transcription-factor binding sites (TFBS), particularly in higher eukaryotic genomes, has been an enormous challenge. Computational methods involving identification of sequence conservation between related genomes have been the most successful since sites found in such highly conserved regions are more likely to be functional, i.e. are bound and regulate protein production. In this thesis, we present such a probabilistic algorithm for predicting TFBSs which also takes evolutionary turnovers into account. Our algorithm is validated via simulations and the results of its application on ChIP-chip data are presented.L'identification des sites de fixation des facteurs de transcription (TFBS), particulièrement sur les génomes eucaryotiques plus élevés, a été un énorme défi. Les méthodes informatiques comportant l'identification de la conservation de séquence entre les génomes de différentes espèces ont eu beaucoup de succès parce que les sites trouvés dans de telles régions fortement conservées sont probablement fonctionnels (les facteurs de transcription se rajoutent sur le génome à ces sites-là et réglent la production de protéine). Dans cette thèse, nous présentons un algorithme probabiliste pour la prédiction de TFBSs qui prend en considération également le remuement évolutionnaire. Notre algorithme est validé par l'intermédiare des simulations et le résultats de son application sur des données ChIP-chip sont présentésMcGill UniversityMathieu Blanchette (Internal/Supervisor)2010Electronic Thesis or Dissertationapplication/pdfenElectronically-submitted theses.All items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.Master of Science (School of Computer Science) http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=87000 |
collection |
NDLTD |
language |
en |
format |
Others
|
sources |
NDLTD |
topic |
Biology - Bioinformatics |
spellingShingle |
Biology - Bioinformatics Parmar, Victor Predicting transcription factor binding sites using phylogenetic footprinting and a probabilistic framework for evolutionary turnover |
description |
Identifying genomic locations of transcription-factor binding sites (TFBS), particularly in higher eukaryotic genomes, has been an enormous challenge. Computational methods involving identification of sequence conservation between related genomes have been the most successful since sites found in such highly conserved regions are more likely to be functional, i.e. are bound and regulate protein production. In this thesis, we present such a probabilistic algorithm for predicting TFBSs which also takes evolutionary turnovers into account. Our algorithm is validated via simulations and the results of its application on ChIP-chip data are presented. === L'identification des sites de fixation des facteurs de transcription (TFBS), particulièrement sur les génomes eucaryotiques plus élevés, a été un énorme défi. Les méthodes informatiques comportant l'identification de la conservation de séquence entre les génomes de différentes espèces ont eu beaucoup de succès parce que les sites trouvés dans de telles régions fortement conservées sont probablement fonctionnels (les facteurs de transcription se rajoutent sur le génome à ces sites-là et réglent la production de protéine). Dans cette thèse, nous présentons un algorithme probabiliste pour la prédiction de TFBSs qui prend en considération également le remuement évolutionnaire. Notre algorithme est validé par l'intermédiare des simulations et le résultats de son application sur des données ChIP-chip sont présentés |
author2 |
Mathieu Blanchette (Internal/Supervisor) |
author_facet |
Mathieu Blanchette (Internal/Supervisor) Parmar, Victor |
author |
Parmar, Victor |
author_sort |
Parmar, Victor |
title |
Predicting transcription factor binding sites using phylogenetic footprinting and a probabilistic framework for evolutionary turnover |
title_short |
Predicting transcription factor binding sites using phylogenetic footprinting and a probabilistic framework for evolutionary turnover |
title_full |
Predicting transcription factor binding sites using phylogenetic footprinting and a probabilistic framework for evolutionary turnover |
title_fullStr |
Predicting transcription factor binding sites using phylogenetic footprinting and a probabilistic framework for evolutionary turnover |
title_full_unstemmed |
Predicting transcription factor binding sites using phylogenetic footprinting and a probabilistic framework for evolutionary turnover |
title_sort |
predicting transcription factor binding sites using phylogenetic footprinting and a probabilistic framework for evolutionary turnover |
publisher |
McGill University |
publishDate |
2010 |
url |
http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=87000 |
work_keys_str_mv |
AT parmarvictor predictingtranscriptionfactorbindingsitesusingphylogeneticfootprintingandaprobabilisticframeworkforevolutionaryturnover |
_version_ |
1716645108303003648 |