Predicting the behavior of robotic swarms in discrete simulation

Doctor of Philosophy === Department of Computing and Information Sciences === David Gustafson === We use probabilistic graphs to predict the location of swarms over 100 steps in simulations in grid worlds. One graph can be used to make predictions for worlds of different dimensions. The worlds are c...

Full description

Bibliographic Details
Main Author: Lancaster, Joseph Paul, Jr
Language:en_US
Published: Kansas State University 2015
Subjects:
Online Access:http://hdl.handle.net/2097/18980
Description
Summary:Doctor of Philosophy === Department of Computing and Information Sciences === David Gustafson === We use probabilistic graphs to predict the location of swarms over 100 steps in simulations in grid worlds. One graph can be used to make predictions for worlds of different dimensions. The worlds are constructed from a single 5x5 square pattern, each square of which may be either unoccupied or occupied by an obstacle or a target. Simulated robots move through the worlds avoiding the obstacles and tagging the targets. The interactions between the robots and the robots and the environment lead to behavior that, even in deterministic simulations, can be difficult to anticipate. The graphs capture the local rate and direction of swarm movement through the pattern. The graphs are used to create a transition matrix, which along with an occupancy matrix, can be used to predict the occupancy in the patterns in the 100 steps using 100 matrix multiplications. In the future, the graphs could be used to predict the movement of physical swarms though patterned environments such as city blocks in applications such as disaster response search and rescue. The predictions could assist in the design and deployment of such swarms and help rule out undesirable behavior.