Ergodicidade e homeomorfismos anulares do toro

Seja f : T2 -> T2 um homeomorfismo homotópico a identidade e F : R2 -> R2 um levantamento de f tal que seu conjunto de rotação rho(F) é um segmento vertical não degenerado contido em 0 × R. Provamos que se f é ergódico com respeito a medida de Lebesgue no toro e se o vetor de rotação méd...

Full description

Bibliographic Details
Main Author: Renato Belinelo Bortolatto
Other Authors: Fabio Armando Tal
Language:Portuguese
Published: Universidade de São Paulo 2012
Subjects:
Online Access:http://www.teses.usp.br/teses/disponiveis/45/45132/tde-29082012-091937/
Description
Summary:Seja f : T2 -> T2 um homeomorfismo homotópico a identidade e F : R2 -> R2 um levantamento de f tal que seu conjunto de rotação rho(F) é um segmento vertical não degenerado contido em 0 × R. Provamos que se f é ergódico com respeito a medida de Lebesgue no toro e se o vetor de rotação médio (com respeito a mesma medida) é da forma (0, alpha) para alpha em R\\Q então existe M > 0 tal que |(Fn (x) - x)1| <= M para todo x em R2 e n em Z (onde (.)1 :R2 -> R é definida por (x,y)1 =x). === Let f : T2 -> T2 be a homeomorphism homotopic to the identity and F : R2 -> R2 a lift of f such that the rotation set rho(F) is a non-degenerated vertical line segment contained in 0 × R. We prove that if f is ergodic with respect to the Lebesgue measure on the torus and the average rotation vector (with respect to same measure) is of the form (0, alpha) for alpha in R\\Q then there exists M > 0 such that |(Fn (x) - x)1| <= M for all x in R2 and n in Z (where (.)1 :R2 -> R is defined by (x, y)1 = x).