Aspectos Práticos Computacionais dos Algoritmos de Simulação MCMC

Os algoritmos de simulação de Monte Carlo em cadeia de Markov (MCMC) têm aplicações em várias áreas da Estatística, entre elas destacamos os problemas de Inferência Bayesiana. A aplicação destas técnicas no entanto, exige uma análise teórica da distribuição a posteriori para assegurar a convergê...

Full description

Bibliographic Details
Main Author: Ana Cláudia Oliveira de Melo
Other Authors: Marinho Gomes de Andrade Filho
Language:Portuguese
Published: Universidade de São Paulo 1999
Subjects:
Online Access:http://www.teses.usp.br/teses/disponiveis/55/55134/tde-05032018-163433/
Description
Summary:Os algoritmos de simulação de Monte Carlo em cadeia de Markov (MCMC) têm aplicações em várias áreas da Estatística, entre elas destacamos os problemas de Inferência Bayesiana. A aplicação destas técnicas no entanto, exige uma análise teórica da distribuição a posteriori para assegurar a convergência. Devido ao alto grau de complexidade de certos problemas, essa análise nem sempre é possível. O objetivo deste estudo é destacar estas dificuldades e apresentar alguns aspectos práticos computacionais que podem auxiliar na solução de problemas de inferência Bayesiana. Entre estes ressaltamos os critérios de seleção de amostras, o uso de técnicas de diagnósticos de convergência e métodos de estimativas. === The algorithms of Monte Cano Markov Chain simulation have application in many areas of statistics, among them we highlight the Bayesian inference problem. The application of these technics however, demands a theoretical analysis of the posterior distribution to assure the convergence. Because of the high complexity levei of certain problems, this analysis is not always possible the purpose of this study is to underline this difficulties and present some practical computational aspects that may help in the solution of the Bayesian inference problems. Among them we emphasize sample selection, convergence diagnostics and parameter inference by central limit theorem.