Requerimento de capital para risco de mercado no Brasil: abordagem baseada na teoria de valores extremos

Made available in DSpace on 2010-04-20T21:00:30Z (GMT). No. of bitstreams: 3 marciocecilioturma2004.pdf.jpg: 19602 bytes, checksum: 0772484d1cb46349dfbfb25620b5cdae (MD5) marciocecilioturma2004.pdf: 859203 bytes, checksum: 346a3e7d5751118ff894a182d7512b56 (MD5) marciocecilioturma2004.pdf.txt: 867...

Full description

Bibliographic Details
Main Author: Santos, Marcio Cecílio
Other Authors: Saito, Richard
Language:Portuguese
Published: 2010
Subjects:
Online Access:http://hdl.handle.net/10438/2071
Description
Summary:Made available in DSpace on 2010-04-20T21:00:30Z (GMT). No. of bitstreams: 3 marciocecilioturma2004.pdf.jpg: 19602 bytes, checksum: 0772484d1cb46349dfbfb25620b5cdae (MD5) marciocecilioturma2004.pdf: 859203 bytes, checksum: 346a3e7d5751118ff894a182d7512b56 (MD5) marciocecilioturma2004.pdf.txt: 86793 bytes, checksum: e0c91b2715fc569bc6ec29bfce078e69 (MD5) Previous issue date: 2007-01-23T00:00:00Z === Há forte evidência que os retornos das séries financeiras apresentam caudas mais pesadas que as da distribuição normal, principalmente em mercados emergentes. No entanto, muitos modelos de risco utilizados pelas instituições financeiras baseiam-se em normalidade condicional ou não condicional, reduzindo a acurácia das estimativas. Os recentes avanços na Teoria de Valores Extremos permitem sua aplicação na modelagem de risco, como por exemplo, na estimação do Valor em Risco e do requerimento de capital. Este trabalho verifica a adequação de um procedimento proposto por McNeil e Frey [1999] para estimação do Valor em Risco e conseqüente requerimento de capital às principais séries financeiras de retornos do Brasil. Tal procedimento semi-paramétrico combina um modelo GARCH ajustado por pseudo máxima verossimilhança para estimação da volatilidade corrente com a Teoria de Valores Extremos para estimação das caudas da distribuição das inovações do modelo GARCH. O procedimento foi comparado através de backtestings com outros métodos mais comuns de estimação de VaR que desconsideram caudas pesadas das inovações ou a natureza estocástica da volatilidade. Concluiu-se que o procedimento proposto por McNeil e Frey [1999] mostrou melhores resultados, principalmente para eventos relacionados a movimentos negativos nos mercados . Futuros trabalhos consistirão no estudo de uma abordagem multivariada de grandes dimensões para estimação de VaR e requerimento de capital para carteiras de investimentos. === There is a strong evidence that financial return series are heavy-tailed, mostly in emerging markets. However, most of the risk models used by financial institutions are based in conditional or non-conditional normality, which reduces the accuracy of the estimates. The recent advances in Extreme Value Theory permit its application to risk measuring, such as Value at Risk and capital adequacy estimates. This work verifies the adequacy of a procedure proposed by McNeil and Frey [1999] to VaR and consequent capital requirement estimates for the main financial return series in Brazil. This semi parametric procedure combines a pseudo-maximumlikelihood fitting GARCH model to estimate the current volatility and the Extreme Value Theory (EVT) to estimate the tails of the innovations distribution of the GARCH model. Using backtestings the procedure was compared to other common methods of VaR estimation that disregard heavy tails of the innovations or the stochastic nature of the volatility. The procedure proposed by McNeil and Frey [1999] showed better results, mostly for negative events in the financial market2 . Further works will consist of studying a high dimensional multivariate approach to estimate VaR and capital requirements for portfolios of investment instruments.