Design of photomodifiable material systems for maskless patterning of functional ceramic and metallic materials at multiple length scales

Silicon and silicon-based materials have been investigated for the fabrication of electronic, optoelectronic, solar, and structural/mechanical devices. To enable the continuous use of silicon-based materials for next generation device applications, new and inexpensive ways of fabricating features of...

Full description

Bibliographic Details
Main Author: Alabi, Taiwo Raphael
Other Authors: Das, Suman
Language:en_US
Published: Georgia Institute of Technology 2014
Subjects:
Online Access:http://hdl.handle.net/1853/51709
Description
Summary:Silicon and silicon-based materials have been investigated for the fabrication of electronic, optoelectronic, solar, and structural/mechanical devices. To enable the continuous use of silicon-based materials for next generation device applications, new and inexpensive ways of fabricating features of silicon, and silica-based materials are needed. This dissertation investigates: 1) novel techniques for the fabrication of silica and silicon nanofeatures with potential application in the electronics and optoelectronics industry; 2) new designs of photomodifiable material systems (resists) for maskless patterning of silica filled composites for structural/mechanical applications. Sub-micron and nano-scaled features were fabricated onto silicon and silicon oxide substrates using a technique combining block copolymers and laser interference ablation. The sacrificial block copolymers are loaded with metallic salt precursors and patterned with a UV laser to generate device-oriented nanofeatures. New photopolymerizable material systems (negative tone resists) were developed based on curcumin photosensitizer and an epoxy-acrylate, vinylether, and vinylether-acrylate silica¬-loaded material systems. The cationic and radical mechanisms employed by the monomeric systems under a high vapor pressure mercury lamp source were investigated with several materials characterization techniques.