Toward sub-10 nm lithographic processes: epoxy-based negative tone molecular resists and directed self-assembly (DSA) of high χ block copolymers
It’s becoming more and more difficult to make smaller, denser, and faster computer chips. There’s an increasing demand to design new materials to be applied in current lithographic process to get higher patterning performance. In this work, the aqueous developable single molecule resists were introd...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | en_US |
Published: |
Georgia Institute of Technology
2013
|
Subjects: | |
Online Access: | http://hdl.handle.net/1853/49113 |
id |
ndltd-GATECH-oai-smartech.gatech.edu-1853-49113 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-GATECH-oai-smartech.gatech.edu-1853-491132016-06-23T03:36:31ZToward sub-10 nm lithographic processes: epoxy-based negative tone molecular resists and directed self-assembly (DSA) of high χ block copolymersCheng, JingLithographyMolecular resistsBlock copolymersDirected self-assemblyBlock copolymersSelf-assembly (Chemistry)PhotoresistsIt’s becoming more and more difficult to make smaller, denser, and faster computer chips. There’s an increasing demand to design new materials to be applied in current lithographic process to get higher patterning performance. In this work, the aqueous developable single molecule resists were introduced, synthesized and patterned. A new group of epoxide other than glycidyl ether, cyclohexene oxide was introduced to functionalize a molecular core and 15 nm resolution was obtained. The directed self-assembly (DSA) of block copolymers as an alternative lithographic technique has received growing interest in the last several years for performing higher levels of pitch subdivision. A 3-step simplified process for DSA by using a photodefinable substrate was introduced by using a functionalized polyphenol with an energy switchable group and a crosslinkable group. Two high χ block copolymers PS-b-PAA and PS-b-PHEMA were successfully designed and synthesized via ATRP with controlled Mw and PDI. The size of the same PS-b-PAA polymer was tunable by varying the thermal annealing time. PS-b-PHEMA shows to be a suitable block polymer for the industry-friendly thermal annealing process. A self-complementary hydrogen-bonding urea group as a center group was used to facilitate the self-assembly of polymers. “Click” chemistry is promising for synthesis of PS-Urea-Urea-PMMA.Georgia Institute of TechnologyTolbert, Laren M.Henderson, Clifford L.2013-09-20T13:30:10Z2013-09-20T13:30:10Z2013-082013-07-08August 20132013-09-20T13:30:10ZDissertationapplication/pdfhttp://hdl.handle.net/1853/49113en_US |
collection |
NDLTD |
language |
en_US |
format |
Others
|
sources |
NDLTD |
topic |
Lithography Molecular resists Block copolymers Directed self-assembly Block copolymers Self-assembly (Chemistry) Photoresists |
spellingShingle |
Lithography Molecular resists Block copolymers Directed self-assembly Block copolymers Self-assembly (Chemistry) Photoresists Cheng, Jing Toward sub-10 nm lithographic processes: epoxy-based negative tone molecular resists and directed self-assembly (DSA) of high χ block copolymers |
description |
It’s becoming more and more difficult to make smaller, denser, and faster computer chips. There’s an increasing demand to design new materials to be applied in current lithographic process to get higher patterning performance. In this work, the aqueous developable single molecule resists were introduced, synthesized and patterned. A new group of epoxide other than glycidyl ether, cyclohexene oxide was introduced to functionalize a molecular core and 15 nm resolution was obtained. The directed self-assembly (DSA) of block copolymers as an alternative lithographic technique has received growing interest in the last several years for performing higher levels of pitch subdivision. A 3-step simplified process for DSA by using a photodefinable substrate was introduced by using a functionalized polyphenol with an energy switchable group and a crosslinkable group. Two high χ block copolymers PS-b-PAA and PS-b-PHEMA were successfully designed and synthesized via ATRP with controlled Mw and PDI. The size of the same PS-b-PAA polymer was tunable by varying the thermal annealing time. PS-b-PHEMA shows to be a suitable block polymer for the industry-friendly thermal annealing process. A self-complementary hydrogen-bonding urea group as a center group was used to facilitate the self-assembly of polymers. “Click” chemistry is promising for synthesis of PS-Urea-Urea-PMMA. |
author2 |
Tolbert, Laren M. |
author_facet |
Tolbert, Laren M. Cheng, Jing |
author |
Cheng, Jing |
author_sort |
Cheng, Jing |
title |
Toward sub-10 nm lithographic processes: epoxy-based negative tone molecular resists and directed self-assembly (DSA) of high χ block copolymers |
title_short |
Toward sub-10 nm lithographic processes: epoxy-based negative tone molecular resists and directed self-assembly (DSA) of high χ block copolymers |
title_full |
Toward sub-10 nm lithographic processes: epoxy-based negative tone molecular resists and directed self-assembly (DSA) of high χ block copolymers |
title_fullStr |
Toward sub-10 nm lithographic processes: epoxy-based negative tone molecular resists and directed self-assembly (DSA) of high χ block copolymers |
title_full_unstemmed |
Toward sub-10 nm lithographic processes: epoxy-based negative tone molecular resists and directed self-assembly (DSA) of high χ block copolymers |
title_sort |
toward sub-10 nm lithographic processes: epoxy-based negative tone molecular resists and directed self-assembly (dsa) of high χ block copolymers |
publisher |
Georgia Institute of Technology |
publishDate |
2013 |
url |
http://hdl.handle.net/1853/49113 |
work_keys_str_mv |
AT chengjing towardsub10nmlithographicprocessesepoxybasednegativetonemolecularresistsanddirectedselfassemblydsaofhighchblockcopolymers |
_version_ |
1718320096363937792 |