改良式協同過濾推薦系統之架構與評估

協同過濾是電子商務中最常被使用也是最成功的推薦技術,但隨著電子商務的發展,網站使用者與商品數也迅速成長,使得使用者相關資料稀疏(Data sparsity)而嚴重影響推薦品質。對於新使用者與新商品,協同過濾也無法提供準確的推薦。為改善以上問題,本研究使用Lemire與Maclachlan (2005)所提出的Slope One演算架構及資料探勘方法中的單純貝式分類器(Naïve bayes classifier)來解決資料稀疏性和冷開始(Cold-start)問題。同時,考量到運算成本,將推薦系統架構分為離線預處理階段和線上預測階段,以避免當使用者數目和商品越來越大時運算成本超過實際可接受程度...

Full description

Bibliographic Details
Main Author: 張玉佩
Language:中文
Published: 國立政治大學
Subjects:
Online Access:http://thesis.lib.nccu.edu.tw/cgi-bin/cdrfb3/gsweb.cgi?o=dstdcdr&i=sid=%22G0993560351%22.