Contrôle stochastique et applications à la couverture d'options en présence d'illiquidité: Aspects théoriques et numériques
Nous étudions quelques applications du contrôle stochastique à la couverture d'options en présence d'illiquidité. Dans la première partie, nous nous intéressons à un problème de surcouverture d'option dans un modèle à volatilité stochastique. L'originalité provient du fait que l&...
Main Author: | |
---|---|
Language: | FRE |
Published: |
Université Paris-Diderot - Paris VII
2008
|
Subjects: | |
Online Access: | http://tel.archives-ouvertes.fr/tel-00262019 http://tel.archives-ouvertes.fr/docs/00/26/20/19/PDF/These.pdf |
id |
ndltd-CCSD-oai-tel.archives-ouvertes.fr-tel-00262019 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-CCSD-oai-tel.archives-ouvertes.fr-tel-002620192013-01-07T18:37:38Z http://tel.archives-ouvertes.fr/tel-00262019 http://tel.archives-ouvertes.fr/docs/00/26/20/19/PDF/These.pdf Contrôle stochastique et applications à la couverture d'options en présence d'illiquidité: Aspects théoriques et numériques Bruder, Benjamin [MATH] Mathematics contraintes gamma surréplication solutions de viscosité intégrales stochastiques doubles volatilité incertaine contrôle impulsionnel retard d'execution principe de comparaison différences finies Nous étudions quelques applications du contrôle stochastique à la couverture d'options en présence d'illiquidité. Dans la première partie, nous nous intéressons à un problème de surcouverture d'option dans un modèle à volatilité stochastique. L'originalité provient du fait que l'actif servant à couvrir la volatilité n'est pas liquide et que l'agent devra donc opérer un montant total fini de transactions. La deuxième partie concerne la couverture d'option en présence de volatilité incertaine dont la dynamique n'est pas spécifiée. Nous introduisons un critère permettant d'obtenir des prix d'options non triviaux, en autorisant l'agent à perdre de l'argent pour des réalisations de la volatilité qu'il juge peu probables. Enfin dans une troisième partie nous étudions un problème de contrôle impulsionnel pour lequel les contrôles prennent effet avec retard. Cette étude s'applique notamment à la couverture d'options sur hedge funds, pour lesquels les ordres d'achat et de vente sont exécutés avec retard. Dans chaque partie, nous caractérisons la fonction valeur du problème comme étant l'unique solution de viscosité d'une équation aux dérivées partielles. Dans la première et la troisième partie, nous introduisons dans un second chapitre des algorithmes de résolution numériques de ces EDP par différences finies. La convergence de ces algorithmes est prouvée de manière théorique. 2008-01-17 FRE PhD thesis Université Paris-Diderot - Paris VII |
collection |
NDLTD |
language |
FRE |
sources |
NDLTD |
topic |
[MATH] Mathematics contraintes gamma surréplication solutions de viscosité intégrales stochastiques doubles volatilité incertaine contrôle impulsionnel retard d'execution principe de comparaison différences finies |
spellingShingle |
[MATH] Mathematics contraintes gamma surréplication solutions de viscosité intégrales stochastiques doubles volatilité incertaine contrôle impulsionnel retard d'execution principe de comparaison différences finies Bruder, Benjamin Contrôle stochastique et applications à la couverture d'options en présence d'illiquidité: Aspects théoriques et numériques |
description |
Nous étudions quelques applications du contrôle stochastique à la couverture d'options en présence d'illiquidité. Dans la première partie, nous nous intéressons à un problème de surcouverture d'option dans un modèle à volatilité stochastique. L'originalité provient du fait que l'actif servant à couvrir la volatilité n'est pas liquide et que l'agent devra donc opérer un montant total fini de transactions. La deuxième partie concerne la couverture d'option en présence de volatilité incertaine dont la dynamique n'est pas spécifiée. Nous introduisons un critère permettant d'obtenir des prix d'options non triviaux, en autorisant l'agent à perdre de l'argent pour des réalisations de la volatilité qu'il juge peu probables. Enfin dans une troisième partie nous étudions un problème de contrôle impulsionnel pour lequel les contrôles prennent effet avec retard. Cette étude s'applique notamment à la couverture d'options sur hedge funds, pour lesquels les ordres d'achat et de vente sont exécutés avec retard. Dans chaque partie, nous caractérisons la fonction valeur du problème comme étant l'unique solution de viscosité d'une équation aux dérivées partielles. Dans la première et la troisième partie, nous introduisons dans un second chapitre des algorithmes de résolution numériques de ces EDP par différences finies. La convergence de ces algorithmes est prouvée de manière théorique. |
author |
Bruder, Benjamin |
author_facet |
Bruder, Benjamin |
author_sort |
Bruder, Benjamin |
title |
Contrôle stochastique et applications à la couverture d'options en présence d'illiquidité: Aspects théoriques et numériques |
title_short |
Contrôle stochastique et applications à la couverture d'options en présence d'illiquidité: Aspects théoriques et numériques |
title_full |
Contrôle stochastique et applications à la couverture d'options en présence d'illiquidité: Aspects théoriques et numériques |
title_fullStr |
Contrôle stochastique et applications à la couverture d'options en présence d'illiquidité: Aspects théoriques et numériques |
title_full_unstemmed |
Contrôle stochastique et applications à la couverture d'options en présence d'illiquidité: Aspects théoriques et numériques |
title_sort |
contrôle stochastique et applications à la couverture d'options en présence d'illiquidité: aspects théoriques et numériques |
publisher |
Université Paris-Diderot - Paris VII |
publishDate |
2008 |
url |
http://tel.archives-ouvertes.fr/tel-00262019 http://tel.archives-ouvertes.fr/docs/00/26/20/19/PDF/These.pdf |
work_keys_str_mv |
AT bruderbenjamin controlestochastiqueetapplicationsalacouverturedoptionsenpresencedilliquiditeaspectstheoriquesetnumeriques |
_version_ |
1716453370706788352 |