Amorphous ternary diffusion barriers for silicon metallizations

NOTE: Text or symbols not renderable in plain ASCII are indicated by [...]. Abstract is included in .pdf document. Reactively sputtered from transition-metal silicide or boride targets in [...] discharges, thin amorphous films of TM-Si-N (TM = Mo, Ta, Ti, or W) and W-B-N are investigated. Resisti...

Full description

Bibliographic Details
Main Author: Reid, Jason S.
Format: Others
Published: 1995
Online Access:https://thesis.library.caltech.edu/4183/1/Reid_js_1995.pdf
Reid, Jason S. (1995) Amorphous ternary diffusion barriers for silicon metallizations. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/4TFH-VM05. https://resolver.caltech.edu/CaltechETD:etd-10192007-131842 <https://resolver.caltech.edu/CaltechETD:etd-10192007-131842>
id ndltd-CALTECH-oai-thesis.library.caltech.edu-4183
record_format oai_dc
spelling ndltd-CALTECH-oai-thesis.library.caltech.edu-41832019-12-22T03:08:24Z Amorphous ternary diffusion barriers for silicon metallizations Reid, Jason S. NOTE: Text or symbols not renderable in plain ASCII are indicated by [...]. Abstract is included in .pdf document. Reactively sputtered from transition-metal silicide or boride targets in [...] discharges, thin amorphous films of TM-Si-N (TM = Mo, Ta, Ti, or W) and W-B-N are investigated. Resistivity, density, stress, and structure are given as functions of composition, and in some cases, temperature. As-deposited films typically contain 100 to 900 MPa of compressive stress, which can be fully relaxed on 'Si' substrates through annealing at 400 to 500[...]. Transmission electron microscopy shows that most of the films are marginally amorphous with the scale of local order ranging from 0.5 to 1.5 nm. Small-angle scattering experiments reveal local chemically dissimilar regions within the films. When fully nitrided, Si appears to be preferentially bonded to nitrogen in the form of Si3N4 in the TM-Si-N films, according to extended energy loss fine structure (EXELFS) measurements. According to tests on shallow junction diodes, 100-nm thick TM-Si-N barriers are able to prevent aluminum overlayers from spiking the Si substrate at temperatures above aluminum's melting point, 660[...]. The exceptional degree of stability is partly attributable to a 3 nm, self-sealing AlN layer which grows at the TM-Si-N/Al interface. By virtue of the self-sealing layer, secondary ion mass spectrometry (SIMS) measurements of [...]/[...] trilayers after a 700[...]/10 h vacuum anneal reveal no diffusivity of Al in [...] films. The performance of the TM-Si-N and W-B-N barriers with copper overlayers is equally impressive. At the proper compositions, 100-nm barriers prevent copper from diffusing into the junction at 800[...] or higher for a 30-min vacuum annealing. Diode failure typically corresponds to the crystallization temperature of the barrier, which can be reduced by the presence of copper. Once the barrier crystallizes, well-defined grain boundaries are introduced that provide fast diffusion paths for Cu. Paring the barriers' thickness down to 10 nm lowers the barriers' effectiveness to approximately 650[...]. Bias stress testing of 10-nm TM-Si-N barriers with Cu overlayers on MOS capacitors reveals no penetration of Cu into SiO2 during an 80 h treatment at 300[...] and 1 MV/cm applied field. Preliminary diffusion measurements of Cu in [...] films by SIMS yield an approximate diffusivity constant of [...]. Through a microscopic four-point probe lithographically defined on a Cu/barrier/Cu trilayer stack, the specific contact resistances of barrier/Cu interfaces are determined for TM-Si-N, TiN, and W barriers. In all instances, the contact resistance is approximately [...] for as-deposited samples. The lack of difference among the barriers may be attributable to inadequate vacuum leading to interfacial impurities. 1995 Thesis NonPeerReviewed application/pdf https://thesis.library.caltech.edu/4183/1/Reid_js_1995.pdf https://resolver.caltech.edu/CaltechETD:etd-10192007-131842 Reid, Jason S. (1995) Amorphous ternary diffusion barriers for silicon metallizations. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/4TFH-VM05. https://resolver.caltech.edu/CaltechETD:etd-10192007-131842 <https://resolver.caltech.edu/CaltechETD:etd-10192007-131842> https://thesis.library.caltech.edu/4183/
collection NDLTD
format Others
sources NDLTD
description NOTE: Text or symbols not renderable in plain ASCII are indicated by [...]. Abstract is included in .pdf document. Reactively sputtered from transition-metal silicide or boride targets in [...] discharges, thin amorphous films of TM-Si-N (TM = Mo, Ta, Ti, or W) and W-B-N are investigated. Resistivity, density, stress, and structure are given as functions of composition, and in some cases, temperature. As-deposited films typically contain 100 to 900 MPa of compressive stress, which can be fully relaxed on 'Si' substrates through annealing at 400 to 500[...]. Transmission electron microscopy shows that most of the films are marginally amorphous with the scale of local order ranging from 0.5 to 1.5 nm. Small-angle scattering experiments reveal local chemically dissimilar regions within the films. When fully nitrided, Si appears to be preferentially bonded to nitrogen in the form of Si3N4 in the TM-Si-N films, according to extended energy loss fine structure (EXELFS) measurements. According to tests on shallow junction diodes, 100-nm thick TM-Si-N barriers are able to prevent aluminum overlayers from spiking the Si substrate at temperatures above aluminum's melting point, 660[...]. The exceptional degree of stability is partly attributable to a 3 nm, self-sealing AlN layer which grows at the TM-Si-N/Al interface. By virtue of the self-sealing layer, secondary ion mass spectrometry (SIMS) measurements of [...]/[...] trilayers after a 700[...]/10 h vacuum anneal reveal no diffusivity of Al in [...] films. The performance of the TM-Si-N and W-B-N barriers with copper overlayers is equally impressive. At the proper compositions, 100-nm barriers prevent copper from diffusing into the junction at 800[...] or higher for a 30-min vacuum annealing. Diode failure typically corresponds to the crystallization temperature of the barrier, which can be reduced by the presence of copper. Once the barrier crystallizes, well-defined grain boundaries are introduced that provide fast diffusion paths for Cu. Paring the barriers' thickness down to 10 nm lowers the barriers' effectiveness to approximately 650[...]. Bias stress testing of 10-nm TM-Si-N barriers with Cu overlayers on MOS capacitors reveals no penetration of Cu into SiO2 during an 80 h treatment at 300[...] and 1 MV/cm applied field. Preliminary diffusion measurements of Cu in [...] films by SIMS yield an approximate diffusivity constant of [...]. Through a microscopic four-point probe lithographically defined on a Cu/barrier/Cu trilayer stack, the specific contact resistances of barrier/Cu interfaces are determined for TM-Si-N, TiN, and W barriers. In all instances, the contact resistance is approximately [...] for as-deposited samples. The lack of difference among the barriers may be attributable to inadequate vacuum leading to interfacial impurities.
author Reid, Jason S.
spellingShingle Reid, Jason S.
Amorphous ternary diffusion barriers for silicon metallizations
author_facet Reid, Jason S.
author_sort Reid, Jason S.
title Amorphous ternary diffusion barriers for silicon metallizations
title_short Amorphous ternary diffusion barriers for silicon metallizations
title_full Amorphous ternary diffusion barriers for silicon metallizations
title_fullStr Amorphous ternary diffusion barriers for silicon metallizations
title_full_unstemmed Amorphous ternary diffusion barriers for silicon metallizations
title_sort amorphous ternary diffusion barriers for silicon metallizations
publishDate 1995
url https://thesis.library.caltech.edu/4183/1/Reid_js_1995.pdf
Reid, Jason S. (1995) Amorphous ternary diffusion barriers for silicon metallizations. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/4TFH-VM05. https://resolver.caltech.edu/CaltechETD:etd-10192007-131842 <https://resolver.caltech.edu/CaltechETD:etd-10192007-131842>
work_keys_str_mv AT reidjasons amorphousternarydiffusionbarriersforsiliconmetallizations
_version_ 1719305048330076160