A hardware spinal decoder

Spinal codes are a recently proposed capacity-achieving rateless code. While hardware encoding of spinal codes is straightforward, the design of an efficient, high-speed hardware decoder poses significant challenges. We present the first such decoder. By relaxing data dependencies inherent in the cl...

Full description

Bibliographic Details
Main Authors: Iannucci, Peter A. (Contributor), Fleming, Kermin Elliott (Contributor), Perry, Jonathan (Contributor), Balakrishnan, Hari (Contributor), Shah, Devavrat (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor)
Format: Article
Language:English
Published: Association for Computing Machinery (ACM), 2014-03-28T15:37:01Z.
Subjects:
Online Access:Get fulltext
LEADER 02239 am a22003013u 4500
001 85951
042 |a dc 
100 1 0 |a Iannucci, Peter A.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
100 1 0 |a Iannucci, Peter A.  |e contributor 
100 1 0 |a Fleming, Kermin Elliott  |e contributor 
100 1 0 |a Perry, Jonathan  |e contributor 
100 1 0 |a Balakrishnan, Hari  |e contributor 
100 1 0 |a Shah, Devavrat  |e contributor 
700 1 0 |a Fleming, Kermin Elliott  |e author 
700 1 0 |a Perry, Jonathan  |e author 
700 1 0 |a Balakrishnan, Hari  |e author 
700 1 0 |a Shah, Devavrat  |e author 
245 0 0 |a A hardware spinal decoder 
260 |b Association for Computing Machinery (ACM),   |c 2014-03-28T15:37:01Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/85951 
520 |a Spinal codes are a recently proposed capacity-achieving rateless code. While hardware encoding of spinal codes is straightforward, the design of an efficient, high-speed hardware decoder poses significant challenges. We present the first such decoder. By relaxing data dependencies inherent in the classic M-algorithm decoder, we obtain area and throughput competitive with 3GPP turbo codes as well as greatly reduced latency and complexity. The enabling architectural feature is a novel alpha-beta incremental approximate selection algorithm. We also present a method for obtaining hints which anticipate successful or failed decoding, permitting early termination and/or feedback-driven adaptation of the decoding parameters. We have validated our implementation in FPGA with on-air testing. Provisional hardware synthesis suggests that a near-capacity implementation of spinal codes can achieve a throughput of 12.5 Mbps in a 65 nm technology while using substantially less area than competitive 3GPP turbo code implementations. 
520 |a Irwin Mark Jacobs and Joan Klein Jacobs Presidential Fellowship 
520 |a Intel Corporation (Fellowship) 
520 |a Claude E. Shannon Research Assistantship 
546 |a en_US 
655 7 |a Article 
773 |t Proceedings of the eighth ACM/IEEE symposium on Architectures for networking and communications systems (ANCS '12)