Dry Lithography of Large-Area, Thin-Film Organic Semiconductors Using Frozen CO[subscript 2] Resists

To address the incompatibility of organic semiconductors with traditional photolithography, an inert, frozen CO[subscript 2] resist is demonstrated that forms an in situ shadow mask. Contact with a room-temperature micro-featured stamp is used to pattern the resist. After thin film deposition, the r...

Full description

Bibliographic Details
Main Authors: Mendoza, Hiroshi A. (Contributor), Ashall, Daniel T. (Author), Yin, Allen S. (Contributor), Baldo, Marc A. (Contributor), Bahlke, Matthias Erhard (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor)
Format: Article
Language:English
Published: Wiley Blackwell, 2013-12-09T14:17:24Z.
Subjects:
Online Access:Get fulltext
LEADER 01514 am a22002773u 4500
001 82881
042 |a dc 
100 1 0 |a Mendoza, Hiroshi A.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
100 1 0 |a Bahlke, Matthias Erhard  |e contributor 
100 1 0 |a Mendoza, Hiroshi A.  |e contributor 
100 1 0 |a Yin, Allen S.  |e contributor 
100 1 0 |a Baldo, Marc A.  |e contributor 
700 1 0 |a Ashall, Daniel T.  |e author 
700 1 0 |a Yin, Allen S.  |e author 
700 1 0 |a Baldo, Marc A.  |e author 
700 1 0 |a Bahlke, Matthias Erhard  |e author 
245 0 0 |a Dry Lithography of Large-Area, Thin-Film Organic Semiconductors Using Frozen CO[subscript 2] Resists 
260 |b Wiley Blackwell,   |c 2013-12-09T14:17:24Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/82881 
520 |a To address the incompatibility of organic semiconductors with traditional photolithography, an inert, frozen CO[subscript 2] resist is demonstrated that forms an in situ shadow mask. Contact with a room-temperature micro-featured stamp is used to pattern the resist. After thin film deposition, the remaining CO[subscript 2] is sublimed to lift off unwanted material. Pixel densities of 325 pixels-per-inch are shown. 
520 |a United States. Dept. of Energy. Office of Basic Energy Sciences (Award DE-SC0001088) 
520 |a MIT Energy Initiative (Graduate Fellowship in Energy) 
546 |a en_US 
655 7 |a Article 
773 |t Advanced Materials