Measuring Cation Dependent DNA Polymerase Fidelity Landscapes by Deep Sequencing

High-throughput recording of signals embedded within inaccessible micro-environments is a technological challenge. The ideal recording device would be a nanoscale machine capable of quantitatively transducing a wide range of variables into a molecular recording medium suitable for long-term storage...

Full description

Bibliographic Details
Main Authors: Zamft, Bradley Michael (Author), Marblestone, Adam Henry (Author), Kording, Konrad P. (Author), Schmidt, Daniel (Contributor), Tyo, Keith (Author), Church, George M. (Author), Martin Alarcon, Daniel Alberto (Author), Boyden, Edward (Author)
Other Authors: Massachusetts Institute of Technology. Department of Biological Engineering (Contributor), Massachusetts Institute of Technology. Media Laboratory (Contributor), McGovern Institute for Brain Research at MIT (Contributor), Program in Media Arts and Sciences (Massachusetts Institute of Technology) (Contributor), Martin Alarcon, Daniel Albert (Contributor), Boyden, Edward Stuart (Contributor)
Format: Article
Language:English
Published: Public Library of Science, 2013-08-22T13:22:31Z.
Subjects:
Online Access:Get fulltext
LEADER 03527 am a22003973u 4500
001 79910
042 |a dc 
100 1 0 |a Zamft, Bradley Michael  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Biological Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Media Laboratory  |e contributor 
100 1 0 |a McGovern Institute for Brain Research at MIT  |e contributor 
100 1 0 |a Program in Media Arts and Sciences   |q  (Massachusetts Institute of Technology)   |e contributor 
100 1 0 |a Schmidt, Daniel  |e contributor 
100 1 0 |a Martin Alarcon, Daniel Albert  |e contributor 
100 1 0 |a Boyden, Edward Stuart  |e contributor 
700 1 0 |a Marblestone, Adam Henry  |e author 
700 1 0 |a Kording, Konrad P.  |e author 
700 1 0 |a Schmidt, Daniel  |e author 
700 1 0 |a Tyo, Keith  |e author 
700 1 0 |a Church, George M.  |e author 
700 1 0 |a Martin Alarcon, Daniel Alberto  |e author 
700 1 0 |a Boyden, Edward  |e author 
245 0 0 |a Measuring Cation Dependent DNA Polymerase Fidelity Landscapes by Deep Sequencing 
260 |b Public Library of Science,   |c 2013-08-22T13:22:31Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/79910 
520 |a High-throughput recording of signals embedded within inaccessible micro-environments is a technological challenge. The ideal recording device would be a nanoscale machine capable of quantitatively transducing a wide range of variables into a molecular recording medium suitable for long-term storage and facile readout in the form of digital data. We have recently proposed such a device, in which cation concentrations modulate the misincorporation rate of a DNA polymerase (DNAP) on a known template, allowing DNA sequences to encode information about the local cation concentration. In this work we quantify the cation sensitivity of DNAP misincorporation rates, making possible the indirect readout of cation concentration by DNA sequencing. Using multiplexed deep sequencing, we quantify the misincorporation properties of two DNA polymerases - Dpo4 and Klenow exo[subscript −] - obtaining the probability and base selectivity of misincorporation at all positions within the template. We find that Dpo4 acts as a DNA recording device for Mn[superscript 2+] with a misincorporation rate gain of ~2%/mM. This modulation of misincorporation rate is selective to the template base: the probability of misincorporation on template T by Dpo4 increases >50-fold over the range tested, while the other template bases are affected less strongly. Furthermore, cation concentrations act as scaling factors for misincorporation: on a given template base, Mn[superscript 2+] and Mg[superscript 2+] change the overall misincorporation rate but do not alter the relative frequencies of incoming misincorporated nucleotides. Characterization of the ion dependence of DNAP misincorporation serves as the first step towards repurposing it as a molecular recording device. 
520 |a Damon Runyon Cancer Research Foundation 
520 |a National Institutes of Health (U.S.) 
520 |a National Science Foundation (U.S.) 
520 |a McGovern Institute for Brain Research at MIT 
520 |a Massachusetts Institute of Technology. Media Laboratory 
520 |a New York Stem Cell Foundation (Robertson Neuroscience Investigator Award) 
520 |a Paul G. Allen Family Foundation (Distinguished Investigator in Neuroscience Award) 
546 |a en_US 
655 7 |a Article 
773 |t PLoS ONE