Nonparametric obstruction detection for UWB localization

Ultra-wide bandwidth (UWB) transmission is a promising technology for indoor localization due to its fine delay resolution and obstacle-penetration capabilities. However, the presence of walls and other obstacles introduces a positive bias in distance estimates, severely degrading localization accur...

Full description

Bibliographic Details
Main Authors: Win, Moe Z. (Contributor), Gifford, Wesley Michael (Contributor), Marano, Stefano (Author), Wymeersch, Henk (Author)
Other Authors: Massachusetts Institute of Technology. Department of Aeronautics and Astronautics (Contributor), Massachusetts Institute of Technology. Laboratory for Information and Decision Systems (Contributor)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers, 2010-11-12T20:56:04Z.
Subjects:
Online Access:Get fulltext
LEADER 02334 am a22003013u 4500
001 59985
042 |a dc 
100 1 0 |a Win, Moe Z.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Aeronautics and Astronautics  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Laboratory for Information and Decision Systems  |e contributor 
100 1 0 |a Win, Moe Z.  |e contributor 
100 1 0 |a Win, Moe Z.  |e contributor 
100 1 0 |a Gifford, Wesley Michael  |e contributor 
700 1 0 |a Gifford, Wesley Michael  |e author 
700 1 0 |a Marano, Stefano  |e author 
700 1 0 |a Wymeersch, Henk  |e author 
245 0 0 |a Nonparametric obstruction detection for UWB localization 
260 |b Institute of Electrical and Electronics Engineers,   |c 2010-11-12T20:56:04Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/59985 
520 |a Ultra-wide bandwidth (UWB) transmission is a promising technology for indoor localization due to its fine delay resolution and obstacle-penetration capabilities. However, the presence of walls and other obstacles introduces a positive bias in distance estimates, severely degrading localization accuracy. We have performed an extensive indoor measurement campaign with FCC-compliant UWB radios to quantify the effect of non-line-of-sight (NLOS) propagation. Based on this campaign, we extract key features that allow us to distinguish between NLOS and LOS conditions. We then propose a nonparametric approach based on support vector machines for NLOS identification, and compare it with existing parametric (i.e., model-based) approaches. Finally, we evaluate the impact on localization through Monte Carlo simulation. Our results show that it is possible to improve positioning accuracy relying solely on the received UWB signal. 
520 |a National Science Foundation (U.S.) (ECCS-0636519) 
520 |a National Institutes of Health (U.S.) (ECCS-0901034) 
520 |a United States. Office of Naval Research (Presidential Early Career Award for Scientists and Engineers (PECASE) N00014- 09-1-0435) 
520 |a Defense University Research Instrumentation Program (U.S.) (Grant N00014-08-1-0826) 
520 |a MIT/Army Institute for Soldier Nanotechnologies 
546 |a en_US 
655 7 |a Article 
773 |t IEEE Global Telecommunications Conference, 2009. GLOBECOM 2009