A 6-bit, 0.2 V to 0.9 V Highly Digital Flash ADC With Comparator Redundancy

A 6-bit highly digital flash ADC is implemented in a 0.18 mum CMOS process. The ADC operates in the subthreshold regime down to 200 mV and employs comparator redundancy and reconfigurability to improve linearity. The low-voltage sampling switch employs voltage boosting, stacking and feedback to redu...

Full description

Bibliographic Details
Main Authors: Daly, Denis C. (Author), Chandrakasan, Anantha P. (Contributor)
Other Authors: Massachusetts Institute of Technology. Microsystems Technology Laboratories (Contributor)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers, 2010-03-11T14:32:46Z.
Subjects:
Online Access:Get fulltext
LEADER 02032 am a22003253u 4500
001 52494
042 |a dc 
100 1 0 |a Daly, Denis C.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Microsystems Technology Laboratories  |e contributor 
100 1 0 |a Chandrakasan, Anantha P.  |e contributor 
100 1 0 |a Chandrakasan, Anantha P.  |e contributor 
700 1 0 |a Chandrakasan, Anantha P.  |e author 
245 0 0 |a A 6-bit, 0.2 V to 0.9 V Highly Digital Flash ADC With Comparator Redundancy 
260 |b Institute of Electrical and Electronics Engineers,   |c 2010-03-11T14:32:46Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/52494 
520 |a A 6-bit highly digital flash ADC is implemented in a 0.18 mum CMOS process. The ADC operates in the subthreshold regime down to 200 mV and employs comparator redundancy and reconfigurability to improve linearity. The low-voltage sampling switch employs voltage boosting, stacking and feedback to reduce leakage. Common-mode rejection is implemented digitally via an IIR filter. The minimum FOM of the ADC is 125 fJ/conversion-step at a 0.4 V supply, where it achieves an ENOB of 5.05 at 400 kS/s. The clocked comparators' switching thresholds are adjusted through a combination of device sizing and stacking. A quadratic relationship between the amount of device stacking and the strength of an input network in the subthreshold regime is derived, demonstrating an advantage of stacking over device width scaling to adjust comparator thresholds. 
520 |a Center for Circuit & System Solutions 
520 |a Focus Center for Circuit and System Solutions 
520 |a Natural Sciences and Engineering Research Council of Canada 
546 |a en_US 
690 |a ultra-low-voltage operation 
690 |a redundancy 
690 |a reassignment 
690 |a low-power electronics 
690 |a comparators (circuits) 
690 |a calibration 
690 |a analog-digital conversion 
690 |a ADC 
655 7 |a Article 
773 |t IEEE Journal of Solid-State Circuits