Finding Multiple Lanes in Urban Road Networks with Vision and Lidar

This paper describes a system for detecting and estimating the properties of multiple travel lanes in an urban road network from calibrated video imagery and laser range data acquired by a moving vehicle. The system operates in real-time in several stages on multiple processors, fusing detected road...

Full description

Bibliographic Details
Main Authors: Huang, Albert S. (Contributor), Moore, David C. (Contributor), Antone, Matthew (Contributor), Olson, Edwin B. (Contributor), Teller, Seth (Contributor)
Other Authors: Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory (Contributor), Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor)
Format: Article
Language:English
Published: Springer Netherlands, 2009-10-19T13:29:34Z.
Subjects:
Online Access:Get fulltext
LEADER 02336 am a22003493u 4500
001 49455
042 |a dc 
100 1 0 |a Huang, Albert S.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
100 1 0 |a Huang, Albert S.  |e contributor 
100 1 0 |a Moore, David C.  |e contributor 
100 1 0 |a Huang, Albert S.  |e contributor 
100 1 0 |a Teller, Seth  |e contributor 
100 1 0 |a Olson, Edwin B.  |e contributor 
100 1 0 |a Antone, Matthew  |e contributor 
700 1 0 |a Moore, David C.  |e author 
700 1 0 |a Antone, Matthew  |e author 
700 1 0 |a Olson, Edwin B.  |e author 
700 1 0 |a Teller, Seth  |e author 
245 0 0 |a Finding Multiple Lanes in Urban Road Networks with Vision and Lidar 
260 |b Springer Netherlands,   |c 2009-10-19T13:29:34Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/49455 
520 |a This paper describes a system for detecting and estimating the properties of multiple travel lanes in an urban road network from calibrated video imagery and laser range data acquired by a moving vehicle. The system operates in real-time in several stages on multiple processors, fusing detected road markings, obstacles, and curbs into a stable non-parametric estimate of nearby travel lanes. The system incorporates elements of a provided piecewise-linear road network as a weak prior. Our method is notable in several respects: it detects and estimates multiple travel lanes; it fuses asynchronous, heterogeneous sensor streams; it handles high-curvature roads; and it makes no assumption about the position or orientation of the vehicle with respect to the road. We analyze the system's performance in the context of the 2007 DARPA Urban Challenge. With five cameras and thirteen lidars, our method was incorporated into a closed-loop controller to successfully guide an autonomous vehicle through a 90 km urban course at speeds up to 40 km/h amidst moving traffic. 
520 |a United States. Defense Advanced Research Projects Agency 
546 |a en_US 
690 |a lane-finding 
690 |a lane estimation 
690 |a lidar 
690 |a vision 
655 7 |a Article 
773 |t Autonomous Robots