Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption

Phenotyping single cells based on the products they secrete or consume is a key bottleneck in many biotechnology applications, such as combinatorial metabolic engineering for the overproduction of secreted metabolites. Here we present a flexible high-throughput approach that uses microfluidics to co...

Full description

Bibliographic Details
Main Authors: Ghaderi, Adel (Contributor), Zhou, Hang (Contributor), Agresti, Jeremy (Author), Stephanopoulos, Gregory (Contributor), Wang, Benjamin L. (Contributor), Weitz, David A. (Author), Fink, Gerald R (Author)
Other Authors: Massachusetts Institute of Technology. Department of Biology (Contributor), Massachusetts Institute of Technology. Department of Chemical Engineering (Contributor), Whitehead Institute for Biomedical Research (Contributor), Fink, Gerald R. (Contributor)
Format: Article
Language:English
Published: Nature Publishing Group, 2016-02-23T00:42:50Z.
Subjects:
Online Access:Get fulltext
LEADER 02528 am a22003493u 4500
001 101236
042 |a dc 
100 1 0 |a Ghaderi, Adel  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Biology  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Chemical Engineering  |e contributor 
100 1 0 |a Whitehead Institute for Biomedical Research  |e contributor 
100 1 0 |a Wang, Benjamin L.  |e contributor 
100 1 0 |a Ghaderi, Adel  |e contributor 
100 1 0 |a Zhou, Hang  |e contributor 
100 1 0 |a Fink, Gerald R.  |e contributor 
100 1 0 |a Stephanopoulos, Gregory  |e contributor 
700 1 0 |a Zhou, Hang  |e author 
700 1 0 |a Agresti, Jeremy  |e author 
700 1 0 |a Stephanopoulos, Gregory  |e author 
700 1 0 |a Wang, Benjamin L.  |e author 
700 1 0 |a Weitz, David A.  |e author 
700 1 0 |a Fink, Gerald R  |e author 
245 0 0 |a Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption 
260 |b Nature Publishing Group,   |c 2016-02-23T00:42:50Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/101236 
520 |a Phenotyping single cells based on the products they secrete or consume is a key bottleneck in many biotechnology applications, such as combinatorial metabolic engineering for the overproduction of secreted metabolites. Here we present a flexible high-throughput approach that uses microfluidics to compartmentalize individual cells for growth and analysis in monodisperse nanoliter aqueous droplets surrounded by an immiscible fluorinated oil phase. We use this system to identify xylose-overconsuming Saccharomyces cerevisiae cells from a population containing one such cell per 10[superscript 4] cells and to screen a genomic library to identify multiple copies of the xylose isomerase gene as a genomic change contributing to high xylose consumption, a trait important for lignocellulosic feedstock utilization. We also enriched L-lactate-producing Escherichia coli clones 5,800× from a population containing one L-lactate producer per 10[superscript 4] D-lactate producers. Our approach has broad applications for single-cell analyses, such as in strain selection for the overproduction of fuels, chemicals and pharmaceuticals. 
520 |a United States. Dept. of Energy (Grant DE-FC36-07G017058) 
520 |a Royal Dutch-Shell Group 
520 |a Singapore-MIT Alliance for Research and Technology 
546 |a en_US 
655 7 |a Article 
773 |t Nature Biotechnology