Monolithic silicon photonics in a sub-100nm SOI CMOS microprocessor foundry: progress from devices to systems

We review recent progress of an effort led by the Stojanović (UC Berkeley), Ram (MIT) and Popović (CU Boulder) research groups to enable the design of photonic devices, and complete on-chip electro-optic systems and interfaces, directly in standard microelectronics CMOS processes in a microprocess...

Full description

Bibliographic Details
Main Authors: Wade, Mark T. (Author), Orcutt, Jason Scott (Contributor), Shainline, Jeffrey M. (Author), Sun, Chen (Author), Georgas, Michael (Contributor), Moss, Benjamin Roy (Contributor), Kumar, Rajesh (Author), Alloatti, Luca (Contributor), Pavanello, Fabio (Author), Chen, Yu-Hsin (Contributor), Nammari, Kareem (Author), Notaros, Jelena (Author), Ram, Rajeev J. (Contributor), Popovic, Milos A. (Author), Atabaki, Amir H. (Contributor), Leu, Jonathan Chung (Contributor), Stojanovic, Vladimir (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Contributor), Massachusetts Institute of Technology. Research Laboratory of Electronics (Contributor)
Format: Article
Language:English
Published: SPIE, 2016-01-27T18:19:30Z.
Subjects:
Online Access:Get fulltext
LEADER 03872 am a22004813u 4500
001 101010
042 |a dc 
100 1 0 |a Wade, Mark T.  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Research Laboratory of Electronics  |e contributor 
100 1 0 |a Orcutt, Jason Scott  |e contributor 
100 1 0 |a Georgas, Michael  |e contributor 
100 1 0 |a Moss, Benjamin Roy  |e contributor 
100 1 0 |a Alloatti, Luca  |e contributor 
100 1 0 |a Chen, Yu-Hsin  |e contributor 
100 1 0 |a Atabaki, Amir H.  |e contributor 
100 1 0 |a Leu, Jonathan Chung  |e contributor 
100 1 0 |a Stojanovic, Vladimir  |e contributor 
100 1 0 |a Ram, Rajeev J.  |e contributor 
700 1 0 |a Orcutt, Jason Scott  |e author 
700 1 0 |a Shainline, Jeffrey M.  |e author 
700 1 0 |a Sun, Chen  |e author 
700 1 0 |a Georgas, Michael  |e author 
700 1 0 |a Moss, Benjamin Roy  |e author 
700 1 0 |a Kumar, Rajesh  |e author 
700 1 0 |a Alloatti, Luca  |e author 
700 1 0 |a Pavanello, Fabio  |e author 
700 1 0 |a Chen, Yu-Hsin  |e author 
700 1 0 |a Nammari, Kareem  |e author 
700 1 0 |a Notaros, Jelena  |e author 
700 1 0 |a Ram, Rajeev J.  |e author 
700 1 0 |a Popovic, Milos A.  |e author 
700 1 0 |a Atabaki, Amir H.  |e author 
700 1 0 |a Leu, Jonathan Chung  |e author 
700 1 0 |a Stojanovic, Vladimir  |e author 
245 0 0 |a Monolithic silicon photonics in a sub-100nm SOI CMOS microprocessor foundry: progress from devices to systems 
260 |b SPIE,   |c 2016-01-27T18:19:30Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/101010 
520 |a We review recent progress of an effort led by the Stojanović (UC Berkeley), Ram (MIT) and Popović (CU Boulder) research groups to enable the design of photonic devices, and complete on-chip electro-optic systems and interfaces, directly in standard microelectronics CMOS processes in a microprocessor foundry, with no in-foundry process modifications. This approach allows tight and large-scale monolithic integration of silicon photonics with state-of-the-art (sub-100nm-node) microelectronics, here a 45nm SOI CMOS process. It enables natural scale-up to manufacturing, and rapid advances in device design due to process repeatability. The initial driver application was addressing the processor-to-memory communication energy bottleneck. Device results include 5Gbps modulators based on an interleaved junction that take advantage of the high resolution of the sub-100nm CMOS process. We demonstrate operation at 5fJ/bit with 1.5dB insertion loss and 8dB extinction ratio. We also demonstrate the first infrared detectors in a zero-change CMOS process, using absorption in transistor source/drain SiGe stressors. Subsystems described include the first monolithically integrated electronic-photonic transmitter on chip (modulator+driver) with 20-70fJ/bit wall plug energy/bit (2-3.5Gbps), to our knowledge the lowest transmitter energy demonstrated to date. We also demonstrate native-process infrared receivers at 220fJ/bit (5Gbps). These are encouraging signs for the prospects of monolithic electronics-photonics integration. Beyond processor-to-memory interconnects, our approach to photonics as a "More-than- Moore" technology inside advanced CMOS promises to enable VLSI electronic-photonic chip platforms tailored to a vast array of emerging applications, from optical and acoustic sensing, high-speed signal processing, RF and optical metrology and clocks, through to analog computation and quantum technology. 
520 |a United States. Defense Advanced Research Projects Agency. Photonically Optimized Embedded Microprocessors Program (Award HR0011-11-C-0100) 
546 |a en_US 
655 7 |a Article 
773 |t Proceedings of SPIE--the International Society for Optical Engineering