A weighted multiple-feature fusion classifier for hyperspectral images with limited training samples

In this paper, a novel weighted multiple-feature classifier based on sparse representation and locally dictionary collaborative representation (WMSLC) is put forward to improve the limited training samples’ hyperspectral image classification performance. The WMSLC method mainly includes the followin...

Full description

Bibliographic Details
Main Authors: Jinghui Yang, Jinxi Qian
Format: Article
Language:English
Published: Taylor & Francis Group 2018-01-01
Series:European Journal of Remote Sensing
Subjects:
Online Access:http://dx.doi.org/10.1080/22797254.2018.1529543