On a problem of Gevorkyan for the Franklin system

In 1870 G. Cantor proved that if \(\lim_{N\rightarrow\infty}\sum_{n=-N}^N\,c_{n}e^{inx} = 0\) for every real \(x\), where \(\bar{c}_{n}=c_{n}\) (\(n\in \mathbb{Z}\)), then all coefficients \(c_{n}\) are equal to zero. Later, in 1950 V. Ya. Kozlov proved that there exists a trigonometric series for...

Full description

Bibliographic Details
Main Author: Zygmunt Wronicz
Format: Article
Language:English
Published: AGH Univeristy of Science and Technology Press 2016-01-01
Series:Opuscula Mathematica
Subjects:
Online Access:http://www.opuscula.agh.edu.pl/vol36/5/art/opuscula_math_3641.pdf