Summary: | Summary: As we begin to design increasingly complex synthetic biomolecular systems, it is essential to develop rational design methodologies that yield predictable circuit performance. Here we apply mathematical tools from the theory of control and dynamical systems to yield practical insights into the architecture and function of a particular class of biological feedback circuit. Specifically, we show that it is possible to analytically characterize both the operating regime and performance tradeoffs of an antithetic integral feedback circuit architecture. Furthermore, we demonstrate how these principles can be applied to inform the design process of a particular synthetic feedback circuit. : Biological Sciences; Systems Biology; In Silico Biology Subject Areas: Biological Sciences, Systems Biology, In Silico Biology
|