A note on Jeśmanowicz’ conjecture for non-primitive Pythagorean triples

Let \((a,b,c)\) be a primitive Pythagorean triple parameterized as \(a=u^{2}−v^{2}, b=2uv, c=u^{2}+v^{2}\), where \(u>v>0\) are co-prime and not of the same parity. In 1956, L. Jeśmanowicz conjectured that for any positive integer \(n\), the Diophantine equation \((an)^{x}+(bn)^{y}=(cn)^{z}\...

Full description

Bibliographic Details
Main Authors: Van Thien Nguyen, Viet Kh. Nguyen, Pham Hung Quy
Format: Article
Language:English
Published: Ptolemy Scientific Research Press 2021-03-01
Series:Open Journal of Mathematical Sciences
Subjects:
Online Access:https://pisrt.org/psr-press/journals/oms-vol-5-2021/a-note-on-jesmanowicz-conjecture-for-non-primitive-pythagorean-triples/