Summary: | In anesthesia and intensive care, treatment benefits that were claimed on the basis of small or modest-sized trials have repeatedly failed to be confirmed in large randomized controlled trials. A well-designed small trial in a homogeneous patient population with high event rates could yield conclusive results; however, patient populations in anesthesia and intensive care are typically heterogeneous because of comorbidities. The size of the anticipated effects of therapeutic interventions is generally low in relation to relevant endpoints. For regulatory purposes, trials are required to demonstrate efficacy in clinically important endpoints, and therefore must be large because clinically important study endpoints such as death, sepsis, or pneumonia are dichotomous and infrequently occur. The rarer endpoint events occur in the study population; that is, the lower the signal-to-noise ratio, the larger the trials must be to prevent random events from being overemphasized. In addition to trial design, sample size determination on the basis of event rates, clinically meaningful risk ratio reductions and actual patient numbers studied are among the most important characteristics when interpreting study results. Trial size is a critical determinant of generalizability of study results to larger or general patient populations. Typical characteristics of small single-center studies responsible for their known fragility include low variability of outcome measures for surrogate parameters and selective publication and reporting. For anesthesiology and intensive care medicine, findings in volume resuscitation research on intravenous infusion of colloids exemplify this, since both the safety of albumin infusion and the adverse effects of the artificial colloid hydroxyethyl starch have been confirmed only in large-sized trials.
|