Drug-Metabolizing Activity, Protein and Gene Expression of UDP-Glucuronosyltransferases Are Significantly Altered in Hepatocellular Carcinoma Patients.
UDP-glucuronosyltransferases (UGTs), the most important enzymes in body detoxification and homeostasis maintaining, govern the glucuronidation reaction of various endogenous and environmental carcinogens. The metabolic function of UGTs can be severely influenced by hepatocellular carcinoma (HCC), th...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2015-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC4444081?pdf=render |
id |
doaj-f44c7a45d48547e1b0961696f94a610e |
---|---|
record_format |
Article |
spelling |
doaj-f44c7a45d48547e1b0961696f94a610e2020-11-24T21:11:03ZengPublic Library of Science (PLoS)PLoS ONE1932-62032015-01-01105e012752410.1371/journal.pone.0127524Drug-Metabolizing Activity, Protein and Gene Expression of UDP-Glucuronosyltransferases Are Significantly Altered in Hepatocellular Carcinoma Patients.Linlin LuJuan ZhouJian ShiXiao-juan PengXiao-xiao QiYing WangFang-Yuan LiFu-Yuan ZhouLiang LiuZhong-Qiu LiuUDP-glucuronosyltransferases (UGTs), the most important enzymes in body detoxification and homeostasis maintaining, govern the glucuronidation reaction of various endogenous and environmental carcinogens. The metabolic function of UGTs can be severely influenced by hepatocellular carcinoma (HCC), the fifth prevalent and third malignant cancer worldwide. Particularly in China, HBV-positive HCC account for approximately 80% of HCC patients. But rare papers addressed the alteration on the metabolism of UGTs specific substrates, translational and transcriptional activity of UGTs in HBV-positive HCC patients. In present study, we choose the main UGT isoforms, UGT1As, UGT1A1, UGT1A9, UGT1A4 and UGT2B7, to determine the alterations of metabolic activity, protein and gene expression of UGTs in HBV-positive HCC. The corresponding specific substrates such as genistein, SN-38, tamoxifen, propofol and zidovudine were utilized respectively in UGTs metabolic activity determination. Furthermore, the plausible mechanism responsible for UGTs alterations was addressed by analyzing the protein and gene expressions in tumor and the adjacent normal tissues in HBV-positive HCC. The results revealed that in the tumor human liver microsomes (HLMs), either V(max) (maximum reaction rate, R(max) for UGT1A1) or the clearance rates (V(max)/K(m), Clint) of UGT1A, UGT1A1, UGT1A4, UGT1A9 and UGT2B7 were significant lower than those of in the adjacent normal HLMs. Subsequently, the relative protein and gene expressions of these isoforms were notably decreased in most of tumor tissues comparing with the adjacent normal tissues. More interestingly, in tumor tissues, the metabolic activity reduction ratio of each UGT isoform was closely related to its protein reduction ratio, indicating that decreasing protein level would contribute to the reduced metabolic function of UGTs in HBV-positive HCC. In summary, our study firstly determined the alteration of UGT function in HBV-positive HCC patients, which would provide an important insight for toxicity or efficacy determination of chemotherapeutic drugs, and even bring a new strategy for clinical regimen in the health cares for the relative patients.http://europepmc.org/articles/PMC4444081?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Linlin Lu Juan Zhou Jian Shi Xiao-juan Peng Xiao-xiao Qi Ying Wang Fang-Yuan Li Fu-Yuan Zhou Liang Liu Zhong-Qiu Liu |
spellingShingle |
Linlin Lu Juan Zhou Jian Shi Xiao-juan Peng Xiao-xiao Qi Ying Wang Fang-Yuan Li Fu-Yuan Zhou Liang Liu Zhong-Qiu Liu Drug-Metabolizing Activity, Protein and Gene Expression of UDP-Glucuronosyltransferases Are Significantly Altered in Hepatocellular Carcinoma Patients. PLoS ONE |
author_facet |
Linlin Lu Juan Zhou Jian Shi Xiao-juan Peng Xiao-xiao Qi Ying Wang Fang-Yuan Li Fu-Yuan Zhou Liang Liu Zhong-Qiu Liu |
author_sort |
Linlin Lu |
title |
Drug-Metabolizing Activity, Protein and Gene Expression of UDP-Glucuronosyltransferases Are Significantly Altered in Hepatocellular Carcinoma Patients. |
title_short |
Drug-Metabolizing Activity, Protein and Gene Expression of UDP-Glucuronosyltransferases Are Significantly Altered in Hepatocellular Carcinoma Patients. |
title_full |
Drug-Metabolizing Activity, Protein and Gene Expression of UDP-Glucuronosyltransferases Are Significantly Altered in Hepatocellular Carcinoma Patients. |
title_fullStr |
Drug-Metabolizing Activity, Protein and Gene Expression of UDP-Glucuronosyltransferases Are Significantly Altered in Hepatocellular Carcinoma Patients. |
title_full_unstemmed |
Drug-Metabolizing Activity, Protein and Gene Expression of UDP-Glucuronosyltransferases Are Significantly Altered in Hepatocellular Carcinoma Patients. |
title_sort |
drug-metabolizing activity, protein and gene expression of udp-glucuronosyltransferases are significantly altered in hepatocellular carcinoma patients. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2015-01-01 |
description |
UDP-glucuronosyltransferases (UGTs), the most important enzymes in body detoxification and homeostasis maintaining, govern the glucuronidation reaction of various endogenous and environmental carcinogens. The metabolic function of UGTs can be severely influenced by hepatocellular carcinoma (HCC), the fifth prevalent and third malignant cancer worldwide. Particularly in China, HBV-positive HCC account for approximately 80% of HCC patients. But rare papers addressed the alteration on the metabolism of UGTs specific substrates, translational and transcriptional activity of UGTs in HBV-positive HCC patients. In present study, we choose the main UGT isoforms, UGT1As, UGT1A1, UGT1A9, UGT1A4 and UGT2B7, to determine the alterations of metabolic activity, protein and gene expression of UGTs in HBV-positive HCC. The corresponding specific substrates such as genistein, SN-38, tamoxifen, propofol and zidovudine were utilized respectively in UGTs metabolic activity determination. Furthermore, the plausible mechanism responsible for UGTs alterations was addressed by analyzing the protein and gene expressions in tumor and the adjacent normal tissues in HBV-positive HCC. The results revealed that in the tumor human liver microsomes (HLMs), either V(max) (maximum reaction rate, R(max) for UGT1A1) or the clearance rates (V(max)/K(m), Clint) of UGT1A, UGT1A1, UGT1A4, UGT1A9 and UGT2B7 were significant lower than those of in the adjacent normal HLMs. Subsequently, the relative protein and gene expressions of these isoforms were notably decreased in most of tumor tissues comparing with the adjacent normal tissues. More interestingly, in tumor tissues, the metabolic activity reduction ratio of each UGT isoform was closely related to its protein reduction ratio, indicating that decreasing protein level would contribute to the reduced metabolic function of UGTs in HBV-positive HCC. In summary, our study firstly determined the alteration of UGT function in HBV-positive HCC patients, which would provide an important insight for toxicity or efficacy determination of chemotherapeutic drugs, and even bring a new strategy for clinical regimen in the health cares for the relative patients. |
url |
http://europepmc.org/articles/PMC4444081?pdf=render |
work_keys_str_mv |
AT linlinlu drugmetabolizingactivityproteinandgeneexpressionofudpglucuronosyltransferasesaresignificantlyalteredinhepatocellularcarcinomapatients AT juanzhou drugmetabolizingactivityproteinandgeneexpressionofudpglucuronosyltransferasesaresignificantlyalteredinhepatocellularcarcinomapatients AT jianshi drugmetabolizingactivityproteinandgeneexpressionofudpglucuronosyltransferasesaresignificantlyalteredinhepatocellularcarcinomapatients AT xiaojuanpeng drugmetabolizingactivityproteinandgeneexpressionofudpglucuronosyltransferasesaresignificantlyalteredinhepatocellularcarcinomapatients AT xiaoxiaoqi drugmetabolizingactivityproteinandgeneexpressionofudpglucuronosyltransferasesaresignificantlyalteredinhepatocellularcarcinomapatients AT yingwang drugmetabolizingactivityproteinandgeneexpressionofudpglucuronosyltransferasesaresignificantlyalteredinhepatocellularcarcinomapatients AT fangyuanli drugmetabolizingactivityproteinandgeneexpressionofudpglucuronosyltransferasesaresignificantlyalteredinhepatocellularcarcinomapatients AT fuyuanzhou drugmetabolizingactivityproteinandgeneexpressionofudpglucuronosyltransferasesaresignificantlyalteredinhepatocellularcarcinomapatients AT liangliu drugmetabolizingactivityproteinandgeneexpressionofudpglucuronosyltransferasesaresignificantlyalteredinhepatocellularcarcinomapatients AT zhongqiuliu drugmetabolizingactivityproteinandgeneexpressionofudpglucuronosyltransferasesaresignificantlyalteredinhepatocellularcarcinomapatients |
_version_ |
1716754675624050688 |