Low-temperature effects on docosahexaenoic acid biosynthesis in Schizochytrium sp. TIO01 and its proposed underlying mechanism
Abstract Background Schizochytrium species are known for their abundant production of docosahexaenoic acid (DHA). Low temperatures can promote the biosynthesis of polyunsaturated fatty acids (PUFAs) in many species. This study investigates low-temperature effects on DHA biosynthesis in Schizochytriu...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2020-10-01
|
Series: | Biotechnology for Biofuels |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13068-020-01811-y |
id |
doaj-f1627c4da26546b7bb7990e7ff77f26b |
---|---|
record_format |
Article |
spelling |
doaj-f1627c4da26546b7bb7990e7ff77f26b2020-11-25T03:44:58ZengBMCBiotechnology for Biofuels1754-68342020-10-0113111410.1186/s13068-020-01811-yLow-temperature effects on docosahexaenoic acid biosynthesis in Schizochytrium sp. TIO01 and its proposed underlying mechanismFan Hu0April L. Clevenger1Peng Zheng2Qiongye Huang3Zhaokai Wang4Third Institute of Oceanography, Ministry of Natural ResourcesDepartment of Chemistry and Biochemistry, University of OklahomaCollege of Life Science and Health, Wuhan University of Science and TechnologyThird Institute of Oceanography, Ministry of Natural ResourcesThird Institute of Oceanography, Ministry of Natural ResourcesAbstract Background Schizochytrium species are known for their abundant production of docosahexaenoic acid (DHA). Low temperatures can promote the biosynthesis of polyunsaturated fatty acids (PUFAs) in many species. This study investigates low-temperature effects on DHA biosynthesis in Schizochytrium sp. TIO01 and its underlying mechanism. Results The Schizochytrium fatty acid biosynthesis pathway was evaluated based on de novo genome assembly (contig N50 = 2.86 Mb) and iTRAQ-based protein identification. Our findings revealed that desaturases, involved in DHA synthesis via the fatty acid synthase (FAS) pathway, were completely absent. The polyketide synthase (PKS) pathway and the FAS pathway are, respectively, responsible for DHA and saturated fatty acid synthesis in Schizochytrium. Analysis of fatty acid composition profiles indicates that low temperature has a significant impact on the production of DHA in Schizochytrium, increasing the DHA content from 43 to 65% of total fatty acids. However, the expression levels of PKS pathway genes were not significantly regulated as the DHA content increased. Further, gene expression analysis showed that pathways related to the production of substrates (acetyl-CoA and NADPH) for fatty acid synthesis (the branched-chain amino acid degradation pathway and the pentose phosphate pathway) and genes related to saturated fatty acid biosynthesis (the FAS pathway genes and malic enzyme) were, respectively, upregulated and downregulated. These results indicate that low temperatures increase the DHA content by likely promoting the entry of relatively large amounts of substrates into the PKS pathway. Conclusions In this study, we provide genomic, proteomic, and transcriptomic evidence for the fatty acid synthesis pathway in Schizochytrium and propose a mechanism by which low temperatures promote the accumulation of DHA in Schizochytrium. The high-quality and nearly complete genome sequence of Schizochytrium provides a valuable reference for investigating the regulation of polyunsaturated fatty acid biosynthesis and the evolutionary characteristics of Thraustochytriidae species.http://link.springer.com/article/10.1186/s13068-020-01811-yLow temperaturePolyunsaturated fatty acidSchizochytriumDe novo genome assemblyDifferential expressed genes |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Fan Hu April L. Clevenger Peng Zheng Qiongye Huang Zhaokai Wang |
spellingShingle |
Fan Hu April L. Clevenger Peng Zheng Qiongye Huang Zhaokai Wang Low-temperature effects on docosahexaenoic acid biosynthesis in Schizochytrium sp. TIO01 and its proposed underlying mechanism Biotechnology for Biofuels Low temperature Polyunsaturated fatty acid Schizochytrium De novo genome assembly Differential expressed genes |
author_facet |
Fan Hu April L. Clevenger Peng Zheng Qiongye Huang Zhaokai Wang |
author_sort |
Fan Hu |
title |
Low-temperature effects on docosahexaenoic acid biosynthesis in Schizochytrium sp. TIO01 and its proposed underlying mechanism |
title_short |
Low-temperature effects on docosahexaenoic acid biosynthesis in Schizochytrium sp. TIO01 and its proposed underlying mechanism |
title_full |
Low-temperature effects on docosahexaenoic acid biosynthesis in Schizochytrium sp. TIO01 and its proposed underlying mechanism |
title_fullStr |
Low-temperature effects on docosahexaenoic acid biosynthesis in Schizochytrium sp. TIO01 and its proposed underlying mechanism |
title_full_unstemmed |
Low-temperature effects on docosahexaenoic acid biosynthesis in Schizochytrium sp. TIO01 and its proposed underlying mechanism |
title_sort |
low-temperature effects on docosahexaenoic acid biosynthesis in schizochytrium sp. tio01 and its proposed underlying mechanism |
publisher |
BMC |
series |
Biotechnology for Biofuels |
issn |
1754-6834 |
publishDate |
2020-10-01 |
description |
Abstract Background Schizochytrium species are known for their abundant production of docosahexaenoic acid (DHA). Low temperatures can promote the biosynthesis of polyunsaturated fatty acids (PUFAs) in many species. This study investigates low-temperature effects on DHA biosynthesis in Schizochytrium sp. TIO01 and its underlying mechanism. Results The Schizochytrium fatty acid biosynthesis pathway was evaluated based on de novo genome assembly (contig N50 = 2.86 Mb) and iTRAQ-based protein identification. Our findings revealed that desaturases, involved in DHA synthesis via the fatty acid synthase (FAS) pathway, were completely absent. The polyketide synthase (PKS) pathway and the FAS pathway are, respectively, responsible for DHA and saturated fatty acid synthesis in Schizochytrium. Analysis of fatty acid composition profiles indicates that low temperature has a significant impact on the production of DHA in Schizochytrium, increasing the DHA content from 43 to 65% of total fatty acids. However, the expression levels of PKS pathway genes were not significantly regulated as the DHA content increased. Further, gene expression analysis showed that pathways related to the production of substrates (acetyl-CoA and NADPH) for fatty acid synthesis (the branched-chain amino acid degradation pathway and the pentose phosphate pathway) and genes related to saturated fatty acid biosynthesis (the FAS pathway genes and malic enzyme) were, respectively, upregulated and downregulated. These results indicate that low temperatures increase the DHA content by likely promoting the entry of relatively large amounts of substrates into the PKS pathway. Conclusions In this study, we provide genomic, proteomic, and transcriptomic evidence for the fatty acid synthesis pathway in Schizochytrium and propose a mechanism by which low temperatures promote the accumulation of DHA in Schizochytrium. The high-quality and nearly complete genome sequence of Schizochytrium provides a valuable reference for investigating the regulation of polyunsaturated fatty acid biosynthesis and the evolutionary characteristics of Thraustochytriidae species. |
topic |
Low temperature Polyunsaturated fatty acid Schizochytrium De novo genome assembly Differential expressed genes |
url |
http://link.springer.com/article/10.1186/s13068-020-01811-y |
work_keys_str_mv |
AT fanhu lowtemperatureeffectsondocosahexaenoicacidbiosynthesisinschizochytriumsptio01anditsproposedunderlyingmechanism AT aprillclevenger lowtemperatureeffectsondocosahexaenoicacidbiosynthesisinschizochytriumsptio01anditsproposedunderlyingmechanism AT pengzheng lowtemperatureeffectsondocosahexaenoicacidbiosynthesisinschizochytriumsptio01anditsproposedunderlyingmechanism AT qiongyehuang lowtemperatureeffectsondocosahexaenoicacidbiosynthesisinschizochytriumsptio01anditsproposedunderlyingmechanism AT zhaokaiwang lowtemperatureeffectsondocosahexaenoicacidbiosynthesisinschizochytriumsptio01anditsproposedunderlyingmechanism |
_version_ |
1724512335980134400 |