Evidence of Decreased Activity in Intermediate-Conductance Calcium-Activated Potassium Channels During Retinoic Acid–Induced Differentiation in Motor Neuron–Like NSC-34 Cells
Background/Aims: Intermediate-conductance Ca2+-activated K+ (IKCa; KCa3.1 or KCNN4) channels affect the behaviors of central neurons including motor neurons. The mechanism through which neuronal differentiation is related to the activity of these channels remains largely unclear. Methods: By using v...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Cell Physiol Biochem Press GmbH & Co KG
2018-08-01
|
Series: | Cellular Physiology and Biochemistry |
Subjects: | |
Online Access: | https://www.karger.com/Article/FullText/492653 |