DOMINATION AND EDGE DOMINATION IN TREES
Let \(G=(V,E)\) be a simple graph. A set \(S\subseteq V\) is a dominating set if every vertex in \(V \setminus S\) is adjacent to a vertex in \(S\). The domination number of a graph \(G\), denoted by \(\gamma(G)\) is the minimum cardinality of a dominating set of \(G\). A set \(D \subseteq E\) is an...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences and Ural Federal University named after the first President of Russia B.N.Yeltsin.
2020-07-01
|
Series: | Ural Mathematical Journal |
Subjects: | |
Online Access: | https://umjuran.ru/index.php/umj/article/view/223 |