On Semiabelian π-Regular Rings

A ring R is defined to be semiabelian if every idempotent of R is either right semicentral or left semicentral. It is proved that the set N(R) of nilpotent elements in a π-regular ring R is an ideal of R if and only if R/J(R) is abelian, where J(R) is the Jacobson radical of R. It follows that a sem...

Full description

Bibliographic Details
Main Author: Weixing Chen
Format: Article
Language:English
Published: Hindawi Limited 2007-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/2007/63171