Temperature Dependence of Raman-Active In-Plane E2g Phonons in Layered Graphene and h-BN Flakes
Abstract Thermal properties of sp2 systems such as graphene and hexagonal boron nitride (h-BN) have attracted significant attention because of both systems being excellent thermal conductors. This research reports micro-Raman measurements on the in-plane E2g optical phonon peaks (~ 1580 cm−1 in grap...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2018-01-01
|
Series: | Nanoscale Research Letters |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s11671-018-2444-2 |
Summary: | Abstract Thermal properties of sp2 systems such as graphene and hexagonal boron nitride (h-BN) have attracted significant attention because of both systems being excellent thermal conductors. This research reports micro-Raman measurements on the in-plane E2g optical phonon peaks (~ 1580 cm−1 in graphene layers and ~ 1362 cm−1 in h-BN layers) as a function of temperature from − 194 to 200 °C. The h-BN flakes show higher sensitivity to temperature-dependent frequency shifts and broadenings than graphene flakes. Moreover, the thermal effect in the c direction on phonon frequency in h-BN layers is more sensitive than that in graphene layers but on phonon broadening in h-BN layers is similar as that in graphene layers. These results are very useful to understand the thermal properties and related physical mechanisms in h-BN and graphene flakes for applications of thermal devices. |
---|---|
ISSN: | 1931-7573 1556-276X |