An Incremental Kernel Density Estimator for Data Stream Computation

Probability density function (p.d.f.) estimation plays a very important role in the field of data mining. Kernel density estimator (KDE) is the mostly used technology to estimate the unknown p.d.f. for the given dataset. The existing KDEs are usually inefficient when handling the p.d.f. estimation p...

Full description

Bibliographic Details
Main Authors: Yulin He, Jie Jiang, Dexin Dai, Klohoun Fabrice
Format: Article
Language:English
Published: Hindawi-Wiley 2020-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2020/1803525