A Methodology for Prognostics Under the Conditions of Limited Failure Data Availability
When failure data are limited, data-driven prognostics solutions underperform since the number of failure data samples is insufficient for training prognostics models effectively. In order to address this problem, we present a novel methodology for generating failure data which allows training datas...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2019-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/8935239/ |