Almost pinning-free bismuth/Ge and /Si interfaces
In this work, we investigated the band alignment at bismuth (Bi)/germanium (Ge) and Bi/silicon (Si) interfaces to understand the mechanism of strong Fermi level pinning (FLP) at element metal/Ge and/Si interfaces. Bi/Ge and/Si interfaces exhibit almost ideal alignment deviating from the trend of str...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIP Publishing LLC
2019-09-01
|
Series: | AIP Advances |
Online Access: | http://dx.doi.org/10.1063/1.5115535 |
Summary: | In this work, we investigated the band alignment at bismuth (Bi)/germanium (Ge) and Bi/silicon (Si) interfaces to understand the mechanism of strong Fermi level pinning (FLP) at element metal/Ge and/Si interfaces. Bi/Ge and/Si interfaces exhibit almost ideal alignment deviating from the trend of strong FLP at element metal/Ge and/Si interfaces. This result suggests that the strong FLP at element metal/Ge and/Si interfaces is mainly caused by the metal-induced gap states (MIGS) in case of the free electron density of metal, and that the weak FLP at direct metal/Ge and/Si interfaces including germanide/Ge and silicide/Si interfaces is comprehensively understandable from the MIGS in case of low electron density. Furthermore, we also discuss impacts of interface structures on the band alignment at the MIGS-weakened interface. |
---|---|
ISSN: | 2158-3226 |