A graph-based big data optimization approach using hidden Markov model and constraint satisfaction problem
Abstract To address the challenges of big data analytics, several works have focused on big data optimization using metaheuristics. The constraint satisfaction problem (CSP) is a fundamental concept of metaheuristics that has shown great efficiency in several fields. Hidden Markov models (HMMs) are...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2021-06-01
|
Series: | Journal of Big Data |
Subjects: | |
Online Access: | https://doi.org/10.1186/s40537-021-00485-z |