Laplace’s equation with concave and convex boundary nonlinearities on an exterior region
Abstract This paper studies Laplace’s equation −Δu=0 $-\Delta u=0$ in an exterior region U⊊RN $U\varsubsetneq {\mathbb{R}}^{N}$, when N≥3 $N\geq 3$, subject to the nonlinear boundary condition ∂u∂ν=λ|u|q−2u+μ|u|p−2u $\frac{\partial u}{\partial \nu }=\lambda \vert u \vert ^{q-2}u+\mu \vert u \vert ^{...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2019-03-01
|
Series: | Boundary Value Problems |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13661-019-1163-7 |