Unsupervised Domain Adaptation Network With Category-Centric Prototype Aligner for Biomedical Image Segmentation
With the widespread success of deep learning in biomedical image segmentation, domain shift becomes a critical and challenging problem, as the gap between two domains can severely affect model performance when deployed to unseen data with heterogeneous features. To alleviate this problem, we present...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2021-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9367129/ |