The Impact of Supervised Manifold Learning on Structure Preserving and Classification Error: A Theoretical Study
In recent years, a variety of supervised manifold learning techniques have been proposed to outperform their unsupervised alternative versions in terms of classification accuracy and data structure capturing. Some dissimilarity measures have been used in these techniques to guide the dimensionality...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2021-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9380338/ |