The role of oxidoreductases in determining the function of the neisserial lipid A phosphoethanolamine transferase required for resistance to polymyxin.
The decoration of the lipid A headgroups of the lipooligosaccharide (LOS) by the LOS phosphoethanolamine (PEA) transferase (LptA) in Neisseria spp. is central for resistance to polymyxin. The structure of the globular domain of LptA shows that the protein has five disulphide bonds, indicating that i...
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2014-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC4162559?pdf=render |
id |
doaj-dfbe11d1734246ffb541648b2ffb0a7f |
---|---|
record_format |
Article |
spelling |
doaj-dfbe11d1734246ffb541648b2ffb0a7f2020-11-25T02:47:16ZengPublic Library of Science (PLoS)PLoS ONE1932-62032014-01-0199e10651310.1371/journal.pone.0106513The role of oxidoreductases in determining the function of the neisserial lipid A phosphoethanolamine transferase required for resistance to polymyxin.Susannah PiekZhirui WangJhuma GangulyAdam M LakeyStephanie N BartleyShakeel MowlaboccusAnandhi AnandanKeith A StubbsMartin J ScanlonAlice VrielinkParastoo AzadiRussell W CarlsonCharlene M KahlerThe decoration of the lipid A headgroups of the lipooligosaccharide (LOS) by the LOS phosphoethanolamine (PEA) transferase (LptA) in Neisseria spp. is central for resistance to polymyxin. The structure of the globular domain of LptA shows that the protein has five disulphide bonds, indicating that it is a potential substrate of the protein oxidation pathway in the bacterial periplasm. When neisserial LptA was expressed in Escherichia coli in the presence of the oxidoreductase, EcDsbA, polymyxin resistance increased 30-fold. LptA decorated one position of the E. coli lipid A headgroups with PEA. In the absence of the EcDsbA, LptA was degraded in E. coli. Neisseria spp. express three oxidoreductases, DsbA1, DsbA2 and DsbA3, each of which appear to donate disulphide bonds to different targets. Inactivation of each oxidoreductase in N. meningitidis enhanced sensitivity to polymyxin with combinatorial mutants displaying an additive increase in sensitivity to polymyxin, indicating that the oxidoreductases were required for multiple pathways leading to polymyxin resistance. Correlates were sought between polymyxin sensitivity, LptA stability or activity and the presence of each of the neisserial oxidoreductases. Only meningococcal mutants lacking DsbA3 had a measurable decrease in the amount of PEA decoration on lipid A headgroups implying that LptA stability was supported by the presence of DsbA3 but did not require DsbA1/2 even though these oxidoreductases could oxidise the protein. This is the first indication that DsbA3 acts as an oxidoreductase in vivo and that multiple oxidoreductases may be involved in oxidising the one target in N. meningitidis. In conclusion, LptA is stabilised by disulphide bonds within the protein. This effect was more pronounced when neisserial LptA was expressed in E. coli than in N. meningitidis and may reflect that other factors in the neisserial periplasm have a role in LptA stability.http://europepmc.org/articles/PMC4162559?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Susannah Piek Zhirui Wang Jhuma Ganguly Adam M Lakey Stephanie N Bartley Shakeel Mowlaboccus Anandhi Anandan Keith A Stubbs Martin J Scanlon Alice Vrielink Parastoo Azadi Russell W Carlson Charlene M Kahler |
spellingShingle |
Susannah Piek Zhirui Wang Jhuma Ganguly Adam M Lakey Stephanie N Bartley Shakeel Mowlaboccus Anandhi Anandan Keith A Stubbs Martin J Scanlon Alice Vrielink Parastoo Azadi Russell W Carlson Charlene M Kahler The role of oxidoreductases in determining the function of the neisserial lipid A phosphoethanolamine transferase required for resistance to polymyxin. PLoS ONE |
author_facet |
Susannah Piek Zhirui Wang Jhuma Ganguly Adam M Lakey Stephanie N Bartley Shakeel Mowlaboccus Anandhi Anandan Keith A Stubbs Martin J Scanlon Alice Vrielink Parastoo Azadi Russell W Carlson Charlene M Kahler |
author_sort |
Susannah Piek |
title |
The role of oxidoreductases in determining the function of the neisserial lipid A phosphoethanolamine transferase required for resistance to polymyxin. |
title_short |
The role of oxidoreductases in determining the function of the neisserial lipid A phosphoethanolamine transferase required for resistance to polymyxin. |
title_full |
The role of oxidoreductases in determining the function of the neisserial lipid A phosphoethanolamine transferase required for resistance to polymyxin. |
title_fullStr |
The role of oxidoreductases in determining the function of the neisserial lipid A phosphoethanolamine transferase required for resistance to polymyxin. |
title_full_unstemmed |
The role of oxidoreductases in determining the function of the neisserial lipid A phosphoethanolamine transferase required for resistance to polymyxin. |
title_sort |
role of oxidoreductases in determining the function of the neisserial lipid a phosphoethanolamine transferase required for resistance to polymyxin. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2014-01-01 |
description |
The decoration of the lipid A headgroups of the lipooligosaccharide (LOS) by the LOS phosphoethanolamine (PEA) transferase (LptA) in Neisseria spp. is central for resistance to polymyxin. The structure of the globular domain of LptA shows that the protein has five disulphide bonds, indicating that it is a potential substrate of the protein oxidation pathway in the bacterial periplasm. When neisserial LptA was expressed in Escherichia coli in the presence of the oxidoreductase, EcDsbA, polymyxin resistance increased 30-fold. LptA decorated one position of the E. coli lipid A headgroups with PEA. In the absence of the EcDsbA, LptA was degraded in E. coli. Neisseria spp. express three oxidoreductases, DsbA1, DsbA2 and DsbA3, each of which appear to donate disulphide bonds to different targets. Inactivation of each oxidoreductase in N. meningitidis enhanced sensitivity to polymyxin with combinatorial mutants displaying an additive increase in sensitivity to polymyxin, indicating that the oxidoreductases were required for multiple pathways leading to polymyxin resistance. Correlates were sought between polymyxin sensitivity, LptA stability or activity and the presence of each of the neisserial oxidoreductases. Only meningococcal mutants lacking DsbA3 had a measurable decrease in the amount of PEA decoration on lipid A headgroups implying that LptA stability was supported by the presence of DsbA3 but did not require DsbA1/2 even though these oxidoreductases could oxidise the protein. This is the first indication that DsbA3 acts as an oxidoreductase in vivo and that multiple oxidoreductases may be involved in oxidising the one target in N. meningitidis. In conclusion, LptA is stabilised by disulphide bonds within the protein. This effect was more pronounced when neisserial LptA was expressed in E. coli than in N. meningitidis and may reflect that other factors in the neisserial periplasm have a role in LptA stability. |
url |
http://europepmc.org/articles/PMC4162559?pdf=render |
work_keys_str_mv |
AT susannahpiek theroleofoxidoreductasesindeterminingthefunctionoftheneisseriallipidaphosphoethanolaminetransferaserequiredforresistancetopolymyxin AT zhiruiwang theroleofoxidoreductasesindeterminingthefunctionoftheneisseriallipidaphosphoethanolaminetransferaserequiredforresistancetopolymyxin AT jhumaganguly theroleofoxidoreductasesindeterminingthefunctionoftheneisseriallipidaphosphoethanolaminetransferaserequiredforresistancetopolymyxin AT adammlakey theroleofoxidoreductasesindeterminingthefunctionoftheneisseriallipidaphosphoethanolaminetransferaserequiredforresistancetopolymyxin AT stephanienbartley theroleofoxidoreductasesindeterminingthefunctionoftheneisseriallipidaphosphoethanolaminetransferaserequiredforresistancetopolymyxin AT shakeelmowlaboccus theroleofoxidoreductasesindeterminingthefunctionoftheneisseriallipidaphosphoethanolaminetransferaserequiredforresistancetopolymyxin AT anandhianandan theroleofoxidoreductasesindeterminingthefunctionoftheneisseriallipidaphosphoethanolaminetransferaserequiredforresistancetopolymyxin AT keithastubbs theroleofoxidoreductasesindeterminingthefunctionoftheneisseriallipidaphosphoethanolaminetransferaserequiredforresistancetopolymyxin AT martinjscanlon theroleofoxidoreductasesindeterminingthefunctionoftheneisseriallipidaphosphoethanolaminetransferaserequiredforresistancetopolymyxin AT alicevrielink theroleofoxidoreductasesindeterminingthefunctionoftheneisseriallipidaphosphoethanolaminetransferaserequiredforresistancetopolymyxin AT parastooazadi theroleofoxidoreductasesindeterminingthefunctionoftheneisseriallipidaphosphoethanolaminetransferaserequiredforresistancetopolymyxin AT russellwcarlson theroleofoxidoreductasesindeterminingthefunctionoftheneisseriallipidaphosphoethanolaminetransferaserequiredforresistancetopolymyxin AT charlenemkahler theroleofoxidoreductasesindeterminingthefunctionoftheneisseriallipidaphosphoethanolaminetransferaserequiredforresistancetopolymyxin AT susannahpiek roleofoxidoreductasesindeterminingthefunctionoftheneisseriallipidaphosphoethanolaminetransferaserequiredforresistancetopolymyxin AT zhiruiwang roleofoxidoreductasesindeterminingthefunctionoftheneisseriallipidaphosphoethanolaminetransferaserequiredforresistancetopolymyxin AT jhumaganguly roleofoxidoreductasesindeterminingthefunctionoftheneisseriallipidaphosphoethanolaminetransferaserequiredforresistancetopolymyxin AT adammlakey roleofoxidoreductasesindeterminingthefunctionoftheneisseriallipidaphosphoethanolaminetransferaserequiredforresistancetopolymyxin AT stephanienbartley roleofoxidoreductasesindeterminingthefunctionoftheneisseriallipidaphosphoethanolaminetransferaserequiredforresistancetopolymyxin AT shakeelmowlaboccus roleofoxidoreductasesindeterminingthefunctionoftheneisseriallipidaphosphoethanolaminetransferaserequiredforresistancetopolymyxin AT anandhianandan roleofoxidoreductasesindeterminingthefunctionoftheneisseriallipidaphosphoethanolaminetransferaserequiredforresistancetopolymyxin AT keithastubbs roleofoxidoreductasesindeterminingthefunctionoftheneisseriallipidaphosphoethanolaminetransferaserequiredforresistancetopolymyxin AT martinjscanlon roleofoxidoreductasesindeterminingthefunctionoftheneisseriallipidaphosphoethanolaminetransferaserequiredforresistancetopolymyxin AT alicevrielink roleofoxidoreductasesindeterminingthefunctionoftheneisseriallipidaphosphoethanolaminetransferaserequiredforresistancetopolymyxin AT parastooazadi roleofoxidoreductasesindeterminingthefunctionoftheneisseriallipidaphosphoethanolaminetransferaserequiredforresistancetopolymyxin AT russellwcarlson roleofoxidoreductasesindeterminingthefunctionoftheneisseriallipidaphosphoethanolaminetransferaserequiredforresistancetopolymyxin AT charlenemkahler roleofoxidoreductasesindeterminingthefunctionoftheneisseriallipidaphosphoethanolaminetransferaserequiredforresistancetopolymyxin |
_version_ |
1724753758995349504 |