Hydrangea‐Like CuS with Irreversible Amorphization Transition for High‐Performance Sodium‐Ion Storage
Abstract Metal sulfides have been intensively investigated for efficient sodium‐ion storage due to their high capacity. However, the mechanisms behind the reaction pathways and phase transformation are still unclear. Moreover, the effects of designed nanostructure on the electrochemical behaviors ar...
Main Authors: | , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-06-01
|
Series: | Advanced Science |
Subjects: | |
Online Access: | https://doi.org/10.1002/advs.201903279 |