On a result of Cartwright and Field

Abstract Let Mn,r=(∑i=1nqixir)1r $M_{n,r}=(\sum_{i=1}^{n}q_{i}x_{i}^{r})^{\frac{1}{r}}$, r≠0 $r\neq 0$, and Mn,0=limr→0Mn,r $M_{n,0}= \lim_{r \rightarrow 0}M_{n,r}$ be the weighted power means of n non-negative numbers xi $x_{i}$, 1≤i≤n $1 \leq i \leq n$, with qi>0 $q_{i} > 0$ satisfying ∑i=1n...

Full description

Bibliographic Details
Main Author: Peng Gao
Format: Article
Language:English
Published: SpringerOpen 2018-12-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-018-1948-8