Improvement in pH Sensitivity of Low-Temperature Polycrystalline-Silicon Thin-Film Transistor Sensors Using H2 Sintering

In this article, we report an improvement in the pH sensitivity of low-temperature polycrystalline-silicon (poly-Si) thin-film transistor (TFT) sensors using an H2 sintering process. The low-temperature polycrystalline-silicon (LTPS) TFT sensor with H2 sintering exhibited a high sensitivity than tha...

Full description

Bibliographic Details
Main Authors: Li-Chen Yen, Ming-Tsyr Tang, Fang-Yu Chang, Tung-Ming Pan, Tien-Sheng Chao, Chiang-Hsuan Lee
Format: Article
Language:English
Published: MDPI AG 2014-02-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/14/3/3825
Description
Summary:In this article, we report an improvement in the pH sensitivity of low-temperature polycrystalline-silicon (poly-Si) thin-film transistor (TFT) sensors using an H2 sintering process. The low-temperature polycrystalline-silicon (LTPS) TFT sensor with H2 sintering exhibited a high sensitivity than that without H2 sintering. This result may be due to the resulting increase in the number of Si–OH2+ and Si–O− bonds due to the incorporation of H in the gate oxide to reduce the dangling silicon bonds and hence create the surface active sites and the resulting increase in the number of chemical reactions at these surface active sites. Moreover, the LTPS TFT sensor device not only offers low cost and a simple fabrication processes, but the technique also can be extended to integrate the sensor into other systems.
ISSN:1424-8220