Existence of infinitely many solutions for a Steklov problem involving the p(x)-Laplace operator

In this article, we study the nonlinear Steklov boundary-value problem $$\begin{alignedat}{2} \Delta_{p(x)}u & =|u|^{p(x)-2}u \quad &&\text{in } \Omega, \\ |\nabla u|^{p(x)-2}\frac{\partial u}{\partial \nu} & = f(x,u) \quad &&\text{on } \partial\Omega. \end{alignedat}$$ We...

Full description

Bibliographic Details
Main Authors: Mostafa Allaoui, Abdel Rachid El Amrouss, Anass Ourraoui
Format: Article
Language:English
Published: University of Szeged 2014-05-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=2148
id doaj-db8fb64b72004074a89a25f9f6fb6289
record_format Article
spelling doaj-db8fb64b72004074a89a25f9f6fb62892021-07-14T07:21:26ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752014-05-0120142011010.14232/ejqtde.2014.1.202148Existence of infinitely many solutions for a Steklov problem involving the p(x)-Laplace operatorMostafa Allaoui0Abdel Rachid El Amrouss1Anass Ourraoui2University Mohamed Ist, Oujda, MoroccoDepartment of Mathematics, Faculty of sciences, University Mohamed I, Oujda, MoroccoDepartment of Mathematics, Faculty of Sciences, University Mohamed I, Oujda, MoroccoIn this article, we study the nonlinear Steklov boundary-value problem $$\begin{alignedat}{2} \Delta_{p(x)}u & =|u|^{p(x)-2}u \quad &&\text{in } \Omega, \\ |\nabla u|^{p(x)-2}\frac{\partial u}{\partial \nu} & = f(x,u) \quad &&\text{on } \partial\Omega. \end{alignedat}$$ We prove the existence of infinitely many non-negative solutions of the problem by applying a general variational principle due to B.\ Ricceri and the theory of the variable exponent Sobolev spaces.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=2148$p(x)$-laplace operator; infinitely many solutions; variable exponent sobolev space; ricceri's variational principle
collection DOAJ
language English
format Article
sources DOAJ
author Mostafa Allaoui
Abdel Rachid El Amrouss
Anass Ourraoui
spellingShingle Mostafa Allaoui
Abdel Rachid El Amrouss
Anass Ourraoui
Existence of infinitely many solutions for a Steklov problem involving the p(x)-Laplace operator
Electronic Journal of Qualitative Theory of Differential Equations
$p(x)$-laplace operator; infinitely many solutions; variable exponent sobolev space; ricceri's variational principle
author_facet Mostafa Allaoui
Abdel Rachid El Amrouss
Anass Ourraoui
author_sort Mostafa Allaoui
title Existence of infinitely many solutions for a Steklov problem involving the p(x)-Laplace operator
title_short Existence of infinitely many solutions for a Steklov problem involving the p(x)-Laplace operator
title_full Existence of infinitely many solutions for a Steklov problem involving the p(x)-Laplace operator
title_fullStr Existence of infinitely many solutions for a Steklov problem involving the p(x)-Laplace operator
title_full_unstemmed Existence of infinitely many solutions for a Steklov problem involving the p(x)-Laplace operator
title_sort existence of infinitely many solutions for a steklov problem involving the p(x)-laplace operator
publisher University of Szeged
series Electronic Journal of Qualitative Theory of Differential Equations
issn 1417-3875
1417-3875
publishDate 2014-05-01
description In this article, we study the nonlinear Steklov boundary-value problem $$\begin{alignedat}{2} \Delta_{p(x)}u & =|u|^{p(x)-2}u \quad &&\text{in } \Omega, \\ |\nabla u|^{p(x)-2}\frac{\partial u}{\partial \nu} & = f(x,u) \quad &&\text{on } \partial\Omega. \end{alignedat}$$ We prove the existence of infinitely many non-negative solutions of the problem by applying a general variational principle due to B.\ Ricceri and the theory of the variable exponent Sobolev spaces.
topic $p(x)$-laplace operator; infinitely many solutions; variable exponent sobolev space; ricceri's variational principle
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=2148
work_keys_str_mv AT mostafaallaoui existenceofinfinitelymanysolutionsforasteklovprobleminvolvingthepxlaplaceoperator
AT abdelrachidelamrouss existenceofinfinitelymanysolutionsforasteklovprobleminvolvingthepxlaplaceoperator
AT anassourraoui existenceofinfinitelymanysolutionsforasteklovprobleminvolvingthepxlaplaceoperator
_version_ 1721303647732629504