Existence of infinitely many solutions for a Steklov problem involving the p(x)-Laplace operator

In this article, we study the nonlinear Steklov boundary-value problem $$\begin{alignedat}{2} \Delta_{p(x)}u & =|u|^{p(x)-2}u \quad &&\text{in } \Omega, \\ |\nabla u|^{p(x)-2}\frac{\partial u}{\partial \nu} & = f(x,u) \quad &&\text{on } \partial\Omega. \end{alignedat}$$ We...

Full description

Bibliographic Details
Main Authors: Mostafa Allaoui, Abdel Rachid El Amrouss, Anass Ourraoui
Format: Article
Language:English
Published: University of Szeged 2014-05-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=2148