Role of the phosphatase PTEN in early vascular remodeling.
BACKGROUND: The phosphatase PTEN represents an important physiological inhibitor of phosphatidylinositol-3 kinase (PI3-K)/protein kinase B (Akt) signalling, however, the functional role of PTEN in the initial phase of angioplasty-induced vascular injury remains elusive. In the present study we sough...
Main Authors: | , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2013-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC3606387?pdf=render |
id |
doaj-da49ea1f5e354191a17bce593c823a4d |
---|---|
record_format |
Article |
spelling |
doaj-da49ea1f5e354191a17bce593c823a4d2020-11-24T21:56:34ZengPublic Library of Science (PLoS)PLoS ONE1932-62032013-01-0183e5544510.1371/journal.pone.0055445Role of the phosphatase PTEN in early vascular remodeling.Daniel G SeddingRebecca Widmer-TeskeAndreas MuellerPhilipp StiegerJan-Marcus DanielDursun GündüzSoni PullamsettiHolger NefHelge MoellmannChristian TroidlChristian HammRüdiger Braun-DullaeusBACKGROUND: The phosphatase PTEN represents an important physiological inhibitor of phosphatidylinositol-3 kinase (PI3-K)/protein kinase B (Akt) signalling, however, the functional role of PTEN in the initial phase of angioplasty-induced vascular injury remains elusive. In the present study we sought to determine PTEN's effect on vascular smooth muscle cell (VSMC) apoptosis following acute injury in vivo and in vitro. METHODS AND RESULTS: Immunohistochemistry indicated a faint basal expression and equal distribution of PTEN in uninjured rat carotid arteries. 12 h following balloon-injury, PTEN expression was strongly increased in apoptotic (TUNEL+) VSMC. In vitro, stimulation with serum or different growth factors or subjecting VSMC to cyclic stretch had no effect on PTEN expression, whereas stimulation with H2O2 robustly increased PTEN expression in a time- and dose-dependent manner. To evaluate the functional role of PTEN expression, human VSMC were transduced with WT-PTEN. Overexpression of PTEN increased the number of apoptotic VSMC (19.8%±4.4 vs. 5.6%±2.3; P<0.001) as determined by TUNEL assay. In contrast, siRNA-mediated knock-down of PTEN attenuated the basal as well as H2O2-induced apoptosis of VSMC. Mechanistically, overexpression of PTEN prevented serum-induced Akt-phosphorylation, whereas siRNA-mediated knock down of PTEN augmented Akt-activation. Moreover, co-transfection of PTEN and a constitutive active Akt mutant prevented PTEN-dependent augmentation of VSMC apoptosis, indicating, that PTEN regulates VSMC apoptosis by inhibition of Akt phosphorylation/activation. CONCLUSION: By interfering with the PI3-K/Akt-dependent survival signalling, the oxidative stress-induced up regulation of PTEN in VSMC of injured arteries augments the sensitivity of VSMC to apoptotic stimuli in the early phase following vascular injury, augmenting the initial injury and cell loss of the injured vessel wall. Thus, these data add to our understanding of PTEN's role during vascular remodelling.http://europepmc.org/articles/PMC3606387?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Daniel G Sedding Rebecca Widmer-Teske Andreas Mueller Philipp Stieger Jan-Marcus Daniel Dursun Gündüz Soni Pullamsetti Holger Nef Helge Moellmann Christian Troidl Christian Hamm Rüdiger Braun-Dullaeus |
spellingShingle |
Daniel G Sedding Rebecca Widmer-Teske Andreas Mueller Philipp Stieger Jan-Marcus Daniel Dursun Gündüz Soni Pullamsetti Holger Nef Helge Moellmann Christian Troidl Christian Hamm Rüdiger Braun-Dullaeus Role of the phosphatase PTEN in early vascular remodeling. PLoS ONE |
author_facet |
Daniel G Sedding Rebecca Widmer-Teske Andreas Mueller Philipp Stieger Jan-Marcus Daniel Dursun Gündüz Soni Pullamsetti Holger Nef Helge Moellmann Christian Troidl Christian Hamm Rüdiger Braun-Dullaeus |
author_sort |
Daniel G Sedding |
title |
Role of the phosphatase PTEN in early vascular remodeling. |
title_short |
Role of the phosphatase PTEN in early vascular remodeling. |
title_full |
Role of the phosphatase PTEN in early vascular remodeling. |
title_fullStr |
Role of the phosphatase PTEN in early vascular remodeling. |
title_full_unstemmed |
Role of the phosphatase PTEN in early vascular remodeling. |
title_sort |
role of the phosphatase pten in early vascular remodeling. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2013-01-01 |
description |
BACKGROUND: The phosphatase PTEN represents an important physiological inhibitor of phosphatidylinositol-3 kinase (PI3-K)/protein kinase B (Akt) signalling, however, the functional role of PTEN in the initial phase of angioplasty-induced vascular injury remains elusive. In the present study we sought to determine PTEN's effect on vascular smooth muscle cell (VSMC) apoptosis following acute injury in vivo and in vitro. METHODS AND RESULTS: Immunohistochemistry indicated a faint basal expression and equal distribution of PTEN in uninjured rat carotid arteries. 12 h following balloon-injury, PTEN expression was strongly increased in apoptotic (TUNEL+) VSMC. In vitro, stimulation with serum or different growth factors or subjecting VSMC to cyclic stretch had no effect on PTEN expression, whereas stimulation with H2O2 robustly increased PTEN expression in a time- and dose-dependent manner. To evaluate the functional role of PTEN expression, human VSMC were transduced with WT-PTEN. Overexpression of PTEN increased the number of apoptotic VSMC (19.8%±4.4 vs. 5.6%±2.3; P<0.001) as determined by TUNEL assay. In contrast, siRNA-mediated knock-down of PTEN attenuated the basal as well as H2O2-induced apoptosis of VSMC. Mechanistically, overexpression of PTEN prevented serum-induced Akt-phosphorylation, whereas siRNA-mediated knock down of PTEN augmented Akt-activation. Moreover, co-transfection of PTEN and a constitutive active Akt mutant prevented PTEN-dependent augmentation of VSMC apoptosis, indicating, that PTEN regulates VSMC apoptosis by inhibition of Akt phosphorylation/activation. CONCLUSION: By interfering with the PI3-K/Akt-dependent survival signalling, the oxidative stress-induced up regulation of PTEN in VSMC of injured arteries augments the sensitivity of VSMC to apoptotic stimuli in the early phase following vascular injury, augmenting the initial injury and cell loss of the injured vessel wall. Thus, these data add to our understanding of PTEN's role during vascular remodelling. |
url |
http://europepmc.org/articles/PMC3606387?pdf=render |
work_keys_str_mv |
AT danielgsedding roleofthephosphatasepteninearlyvascularremodeling AT rebeccawidmerteske roleofthephosphatasepteninearlyvascularremodeling AT andreasmueller roleofthephosphatasepteninearlyvascularremodeling AT philippstieger roleofthephosphatasepteninearlyvascularremodeling AT janmarcusdaniel roleofthephosphatasepteninearlyvascularremodeling AT dursungunduz roleofthephosphatasepteninearlyvascularremodeling AT sonipullamsetti roleofthephosphatasepteninearlyvascularremodeling AT holgernef roleofthephosphatasepteninearlyvascularremodeling AT helgemoellmann roleofthephosphatasepteninearlyvascularremodeling AT christiantroidl roleofthephosphatasepteninearlyvascularremodeling AT christianhamm roleofthephosphatasepteninearlyvascularremodeling AT rudigerbraundullaeus roleofthephosphatasepteninearlyvascularremodeling |
_version_ |
1725858359067803648 |