A new characterization of PSL(2, 27)
Let G be a finite group and pi_{e}(G) be the set of element orders of G. Let k in pi_{e}(G)$ and m_{k} be the number of elements of order k in G. Set nse(G):={ m_{k} | k in pi_{e}(G)}. In this paper, we prove that if G is a group such that nse(G)=nse(PSL(2, 27)) then G is isomophic to PSL(2, 27).
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Sociedade Brasileira de Matemática
2014-01-01
|
Series: | Boletim da Sociedade Paranaense de Matemática |
Subjects: | |
Online Access: | http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/15899 |