Local Heterogeneous Features for Person Re-Identification in Harsh Environments
Local features could learn semantic information for pedestrian images and they are very important for person re-identification (Re-ID) in harsh environments. However, most approaches only optimize one kind of local feature, which results in incomplete local features. In this paper, we propose Local...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9084088/ |