A New Variational Bayesian Adaptive Extended Kalman Filter for Cooperative Navigation

To solve the problem of unknown state noises and uncertain measurement noises inherent in underwater cooperative navigation, a new Variational Bayesian (VB)-based Adaptive Extended Kalman Filter (VBAEKF) for master–slave Autonomous Underwater Vehicles (AUV) is proposed in this paper. The I...

Full description

Bibliographic Details
Main Authors: Chengjiao Sun, Yonggang Zhang, Guoqing Wang, Wei Gao
Format: Article
Language:English
Published: MDPI AG 2018-08-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/18/8/2538
Description
Summary:To solve the problem of unknown state noises and uncertain measurement noises inherent in underwater cooperative navigation, a new Variational Bayesian (VB)-based Adaptive Extended Kalman Filter (VBAEKF) for master–slave Autonomous Underwater Vehicles (AUV) is proposed in this paper. The Inverse Wishart (IW) distribution is used to model the predicted error covariance and measurement noise covariance matrix. The state, together with the predicted error covariance and measurement noise covariance matrix, can be adaptively estimated based on VB approximation. The performance of the proposed algorithm is demonstrated through a lake trial, which shows the advantage of the proposed algorithm.
ISSN:1424-8220